cs.AI updates on arXiv.org 07月22日 12:44
APTx Neuron: A Unified Trainable Neuron Architecture Integrating Activation and Computation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出APTx神经元,整合非线性激活和线性变换,提高计算效率,应用于MNIST数据集测试,达到96.69%准确率,预示统一神经元设计新范式。

arXiv:2507.14270v1 Announce Type: cross Abstract: We propose the APTx Neuron, a novel, unified neural computation unit that integrates non-linear activation and linear transformation into a single trainable expression. The APTx Neuron is derived from the APTx activation function, thereby eliminating the need for separate activation layers and making the architecture both computationally efficient and elegant. The proposed neuron follows the functional form $y = \sum_{i=1}^{n} ((\alpha_i + \tanh(\beta_i x_i)) \cdot \gamma_i x_i) + \delta$, where all parameters $\alpha_i$, $\beta_i$, $\gamma_i$, and $\delta$ are trainable. We validate our APTx Neuron-based architecture on the MNIST dataset, achieving up to 96.69\% test accuracy in just 20 epochs using approximately 332K trainable parameters. The results highlight the superior expressiveness and computational efficiency of the APTx Neuron compared to traditional neurons, pointing toward a new paradigm in unified neuron design and the architectures built upon it.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

APTx神经元 神经网络 计算效率 MNIST 数据集
相关文章