arXiv:2507.14270v1 Announce Type: cross Abstract: We propose the APTx Neuron, a novel, unified neural computation unit that integrates non-linear activation and linear transformation into a single trainable expression. The APTx Neuron is derived from the APTx activation function, thereby eliminating the need for separate activation layers and making the architecture both computationally efficient and elegant. The proposed neuron follows the functional form $y = \sum_{i=1}^{n} ((\alpha_i + \tanh(\beta_i x_i)) \cdot \gamma_i x_i) + \delta$, where all parameters $\alpha_i$, $\beta_i$, $\gamma_i$, and $\delta$ are trainable. We validate our APTx Neuron-based architecture on the MNIST dataset, achieving up to 96.69\% test accuracy in just 20 epochs using approximately 332K trainable parameters. The results highlight the superior expressiveness and computational efficiency of the APTx Neuron compared to traditional neurons, pointing toward a new paradigm in unified neuron design and the architectures built upon it.