cs.AI updates on arXiv.org 07月22日 12:44
Conditional Video Generation for High-Efficiency Video Compression
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种利用条件扩散模型进行感知优化重建的视频压缩框架,通过多粒度条件、紧凑表示和多条件训练等模块,显著提升视频压缩感知质量。

arXiv:2507.15269v1 Announce Type: cross Abstract: Perceptual studies demonstrate that conditional diffusion models excel at reconstructing video content aligned with human visual perception. Building on this insight, we propose a video compression framework that leverages conditional diffusion models for perceptually optimized reconstruction. Specifically, we reframe video compression as a conditional generation task, where a generative model synthesizes video from sparse, yet informative signals. Our approach introduces three key modules: (1) Multi-granular conditioning that captures both static scene structure and dynamic spatio-temporal cues; (2) Compact representations designed for efficient transmission without sacrificing semantic richness; (3) Multi-condition training with modality dropout and role-aware embeddings, which prevent over-reliance on any single modality and enhance robustness. Extensive experiments show that our method significantly outperforms both traditional and neural codecs on perceptual quality metrics such as Fr\'echet Video Distance (FVD) and LPIPS, especially under high compression ratios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视频压缩 条件扩散模型 感知优化 压缩比
相关文章