cs.AI updates on arXiv.org 07月22日 12:44
FAMST: Fast Approximate Minimum Spanning Tree Construction for Large-Scale and High-Dimensional Data
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为FAMST的新算法,用于解决大规模高维数据集构建最小生成树(MST)的计算难题。FAMST通过近似最近邻图构建、近似最近邻组件连接和迭代边细化三个阶段,实现了比传统方法更优的时间和空间复杂度。实验表明,FAMST在保证低近似误差的同时,速度可提高1000倍。

arXiv:2507.14261v1 Announce Type: cross Abstract: We present Fast Approximate Minimum Spanning Tree (FAMST), a novel algorithm that addresses the computational challenges of constructing Minimum Spanning Trees (MSTs) for large-scale and high-dimensional datasets. FAMST utilizes a three-phase approach: Approximate Nearest Neighbor (ANN) graph construction, ANN inter-component connection, and iterative edge refinement. For a dataset of $n$ points in a $d$-dimensional space, FAMST achieves $\mathcal{O}(dn \log n)$ time complexity and $\mathcal{O}(dn + kn)$ space complexity when $k$ nearest neighbors are considered, which is a significant improvement over the $\mathcal{O}(n^2)$ time and space complexity of traditional methods. Experiments across diverse datasets demonstrate that FAMST achieves remarkably low approximation errors while providing speedups of up to 1000$\times$ compared to exact MST algorithms. We analyze how the key hyperparameters, $k$ (neighborhood size) and $\lambda$ (inter-component edges), affect performance, providing practical guidelines for hyperparameter selection. FAMST enables MST-based analysis on datasets with millions of points and thousands of dimensions, extending the applicability of MST techniques to problem scales previously considered infeasible.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

FAMST 最小生成树 高维数据 算法优化
相关文章