cs.AI updates on arXiv.org 07月22日 12:34
Mitigating Trojanized Prompt Chains in Educational LLM Use Cases: Experimental Findings and Detection Tool Design
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型在K-12教育中的潜在风险,如学生通过恶意提示诱导LLMs输出不当内容,并提出了一种名为TrojanPromptGuard的检测工具。

arXiv:2507.14207v1 Announce Type: cross Abstract: The integration of Large Language Models (LLMs) in K--12 education offers both transformative opportunities and emerging risks. This study explores how students may Trojanize prompts to elicit unsafe or unintended outputs from LLMs, bypassing established content moderation systems with safety guardrils. Through a systematic experiment involving simulated K--12 queries and multi-turn dialogues, we expose key vulnerabilities in GPT-3.5 and GPT-4. This paper presents our experimental design, detailed findings, and a prototype tool, TrojanPromptGuard (TPG), to automatically detect and mitigate Trojanized educational prompts. These insights aim to inform both AI safety researchers and educational technologists on the safe deployment of LLMs for educators.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 教育应用 风险防范
相关文章