arXiv:2507.14198v1 Announce Type: cross Abstract: Large language models (LLMs) store vast amounts of knowledge, which often requires updates to correct factual errors, incorporate newly acquired information, or adapt model behavior. Model editing methods have emerged as efficient solutions for such updates, offering localized and precise knowledge modification at significantly lower computational cost than continual training. In parallel, LLMs are frequently fine-tuned for a wide range of downstream tasks. However, the effect of fine-tuning on previously edited knowledge remains poorly understood. In this work, we systematically investigate how different fine-tuning objectives interact with various model editing techniques. Our findings show that edited knowledge is substantially more susceptible to forgetting during fine-tuning than intrinsic knowledge acquired through pre-training. This analysis highlights a key limitation of current editing approaches and suggests that evaluating edit robustness under downstream fine-tuning is critical for their practical deployment. We further find that freezing layers associated with edited content can significantly improve knowledge retention, offering insight into how future editing methods might be made more robust.