cs.AI updates on arXiv.org 07月22日 12:34
Digital Twin-Assisted Explainable AI for Robust Beam Prediction in mmWave MIMO Systems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于深度学习的毫米波MIMO系统波束对准引擎,通过数字孪生技术生成模拟数据,实现高效波束对准,降低数据收集和训练开销,提高系统性能。

arXiv:2507.14180v1 Announce Type: cross Abstract: In line with the AI-native 6G vision, explainability and robustness are crucial for building trust and ensuring reliable performance in millimeter-wave (mmWave) systems. Efficient beam alignment is essential for initial access, but deep learning (DL) solutions face challenges, including high data collection overhead, hardware constraints, lack of explainability, and susceptibility to adversarial attacks. This paper proposes a robust and explainable DL-based beam alignment engine (BAE) for mmWave multiple-input multiple output (MIMO) systems. The BAE uses received signal strength indicator (RSSI) measurements from wide beams to predict the best narrow beam, reducing the overhead of exhaustive beam sweeping. To overcome the challenge of real-world data collection, this work leverages a site-specific digital twin (DT) to generate synthetic channel data closely resembling real-world environments. A model refinement via transfer learning is proposed to fine-tune the pre-trained model residing in the DT with minimal real-world data, effectively bridging mismatches between the digital replica and real-world environments. To reduce beam training overhead and enhance transparency, the framework uses deep Shapley additive explanations (SHAP) to rank input features by importance, prioritizing key spatial directions and minimizing beam sweeping. It also incorporates the Deep k-nearest neighbors (DkNN) algorithm, providing a credibility metric for detecting out-of-distribution inputs and ensuring robust, transparent decision-making. Experimental results show that the proposed framework reduces real-world data needs by 70%, beam training overhead by 62%, and improves outlier detection robustness by up to 8.5x, achieving near-optimal spectral efficiency and transparent decision making compared to traditional softmax based DL models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

6G 毫米波 深度学习 波束对准 数字孪生
相关文章