cs.AI updates on arXiv.org 07月22日 12:34
Learning Null Geodesics for Gravitational Lensing Rendering in General Relativity
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种利用神经网络实现黑洞引力透镜效应渲染的创新方法,通过训练神经网络拟合黑洞周围的时空,生成受引力透镜影响的光线路径,显著降低渲染时间,并验证了其在多黑洞系统中的准确性。

arXiv:2507.15775v1 Announce Type: cross Abstract: We present GravLensX, an innovative method for rendering black holes with gravitational lensing effects using neural networks. The methodology involves training neural networks to fit the spacetime around black holes and then employing these trained models to generate the path of light rays affected by gravitational lensing. This enables efficient and scalable simulations of black holes with optically thin accretion disks, significantly decreasing the time required for rendering compared to traditional methods. We validate our approach through extensive rendering of multiple black hole systems with superposed Kerr metric, demonstrating its capability to produce accurate visualizations with significantly $15\times$ reduced computational time. Our findings suggest that neural networks offer a promising alternative for rendering complex astrophysical phenomena, potentially paving a new path to astronomical visualization.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

黑洞渲染 神经网络 引力透镜 天文可视化 计算效率
相关文章