cs.AI updates on arXiv.org 07月22日 12:34
Surface EMG Profiling in Parkinson's Disease: Advancing Severity Assessment with GCN-SVM
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

研究利用表面肌电图(sEMG)评估帕金森病(PD)严重程度,通过比较PD患者与健康对照组的数据,发现显著神经肌肉差异。传统SVM模型达到83%准确率,GCN-SVM模型提升至92%。研究为未来更大规模研究提供实验方法,有望提升PD诊断和患者护理。

arXiv:2507.14153v1 Announce Type: cross Abstract: Parkinson's disease (PD) poses challenges in diagnosis and monitoring due to its progressive nature and complex symptoms. This study introduces a novel approach utilizing surface electromyography (sEMG) to objectively assess PD severity, focusing on the biceps brachii muscle. Initial analysis of sEMG data from five PD patients and five healthy controls revealed significant neuromuscular differences. A traditional Support Vector Machine (SVM) model achieved up to 83% accuracy, while enhancements with a Graph Convolutional Network-Support Vector Machine (GCN-SVM) model increased accuracy to 92%. Despite the preliminary nature of these results, the study outlines a detailed experimental methodology for future research with larger cohorts to validate these findings and integrate the approach into clinical practice. The proposed approach holds promise for advancing PD severity assessment and improving patient care in Parkinson's disease management.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

帕金森病 sEMG 诊断 模型 准确性
相关文章