cs.AI updates on arXiv.org 07月22日 12:34
Accelerating HEC-RAS: A Recurrent Neural Operator for Rapid River Forecasting
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于深度学习的替代模型,通过结合GRU和Geo-FNO,实现HEC-RAS模型的加速,在保持预测准确性的同时,将计算时间缩短近3.5倍。

arXiv:2507.15614v1 Announce Type: cross Abstract: Physics-based solvers like HEC-RAS provide high-fidelity river forecasts but are too computationally intensive for on-the-fly decision-making during flood events. The central challenge is to accelerate these simulations without sacrificing accuracy. This paper introduces a deep learning surrogate that treats HEC-RAS not as a solver but as a data-generation engine. We propose a hybrid, auto-regressive architecture that combines a Gated Recurrent Unit (GRU) to capture short-term temporal dynamics with a Geometry-Aware Fourier Neural Operator (Geo-FNO) to model long-range spatial dependencies along a river reach. The model learns underlying physics implicitly from a minimal eight-channel feature vector encoding dynamic state, static geometry, and boundary forcings extracted directly from native HEC-RAS files. Trained on 67 reaches of the Mississippi River Basin, the surrogate was evaluated on a year-long, unseen hold-out simulation. Results show the model achieves a strong predictive accuracy, with a median absolute stage error of 0.31 feet. Critically, for a full 67-reach ensemble forecast, our surrogate reduces the required wall-clock time from 139 minutes to 40 minutes, a speedup of nearly 3.5 times over the traditional solver. The success of this data-driven approach demonstrates that robust feature engineering can produce a viable, high-speed replacement for conventional hydraulic models, improving the computational feasibility of large-scale ensemble flood forecasting.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 洪水预报 HEC-RAS GRU Geo-FNO
相关文章