cs.AI updates on arXiv.org 07月22日 12:34
DIVER-0 : A Fully Channel Equivariant EEG Foundation Model
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出DIVER-0 EEG基础模型,通过全时空注意力机制和旋转位置嵌入,有效建模脑电时空动态,实现跨电极配置的鲁棒泛化。

arXiv:2507.14141v1 Announce Type: cross Abstract: Electroencephalography (EEG) is a non-invasive technique widely used in brain-computer interfaces and clinical applications, yet existing EEG foundation models face limitations in modeling spatio-temporal brain dynamics and lack channel permutation equivariance, preventing robust generalization across diverse electrode configurations. To address these challenges, we propose DIVER-0, a novel EEG foundation model that demonstrates how full spatio-temporal attention-rather than segregated spatial or temporal processing-achieves superior performance when properly designed with Rotary Position Embedding (RoPE) for temporal relationships and binary attention biases for channel differentiation. We also introduce Sliding Temporal Conditional Positional Encoding (STCPE), which improves upon existing conditional positional encoding approaches by maintaining both temporal translation equivariance and channel permutation equivariance, enabling robust adaptation to arbitrary electrode configurations unseen during pretraining. Experimental results demonstrate that DIVER-0 achieves competitive performance with only 10% of pretraining data while maintaining consistent results across all channel permutation conditions, validating its effectiveness for cross-dataset generalization and establishing key design principles for handling the inherent heterogeneity of neural recording setups.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

脑电 模型 泛化 EEG DIVER-0
相关文章