cs.AI updates on arXiv.org 07月22日 12:34
SPAR: Scholar Paper Retrieval with LLM-based Agents for Enhanced Academic Search
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为SPAR的多代理框架,通过RefChain查询分解和查询进化,提高学术文献检索的灵活性和有效性。实验结果表明,SPAR在AutoScholar和SPARBench基准测试中均显著优于现有基准,为学术检索研究提供了新的基础。

arXiv:2507.15245v1 Announce Type: cross Abstract: Recent advances in large language models (LLMs) have opened new opportunities for academic literature retrieval. However, existing systems often rely on rigid pipelines and exhibit limited reasoning capabilities. We introduce SPAR, a multi-agent framework that incorporates RefChain-based query decomposition and query evolution to enable more flexible and effective search. To facilitate systematic evaluation, we also construct SPARBench, a challenging benchmark with expert-annotated relevance labels. Experimental results demonstrate that SPAR substantially outperforms strong baselines, achieving up to +56% F1 on AutoScholar and +23% F1 on SPARBench over the best-performing baseline. Together, SPAR and SPARBench provide a scalable, interpretable, and high-performing foundation for advancing research in scholarly retrieval. Code and data will be available at: https://github.com/xiaofengShi/SPAR

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

学术检索 多代理框架 SPAR RefChain 性能提升
相关文章