cs.AI updates on arXiv.org 07月22日 12:34
Solving Formal Math Problems by Decomposition and Iterative Reflection
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为Delta Prover的框架,通过通用LLM与Lean 4证明环境的交互,实现高效的形式化证明,无需模型专门化,成功率达到95.9%,优于现有方法。

arXiv:2507.15225v1 Announce Type: new Abstract: General-purpose Large Language Models (LLMs) have achieved remarkable success in intelligence, performing comparably to human experts on complex reasoning tasks such as coding and mathematical reasoning. However, generating formal proofs in specialized languages like Lean 4 remains a significant challenge for these models, limiting their application in complex theorem proving and automated verification. Current approaches typically require specializing models through fine-tuning on dedicated formal corpora, incurring high costs for data collection and training. In this work, we introduce \textbf{Delta Prover}, an agent-based framework that orchestrates the interaction between a general-purpose LLM and the Lean 4 proof environment. Delta Prover leverages the reflection and reasoning capabilities of general-purpose LLMs to interactively construct formal proofs in Lean 4, circumventing the need for model specialization. At its core, the agent integrates two novel, interdependent components: an algorithmic framework for reflective decomposition and iterative proof repair, and a custom Domain-Specific Language (DSL) built upon Lean 4 for streamlined subproblem management. \textbf{Delta Prover achieves a state-of-the-art 95.9\% success rate on the miniF2F-test benchmark, surpassing all existing approaches, including those requiring model specialization.} Furthermore, Delta Prover exhibits a significantly stronger test-time scaling law compared to standard Best-of-N proof strategies. Crucially, our findings demonstrate that general-purpose LLMs, when guided by an effective agentic structure, possess substantial untapped theorem-proving capabilities. This presents a computationally efficient alternative to specialized models for robust automated reasoning in formal environments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

通用LLM Lean 4证明 形式化证明 Delta Prover 自动化推理
相关文章