cs.AI updates on arXiv.org 07月22日 12:34
Latent Space Synergy: Text-Guided Data Augmentation for Direct Diffusion Biomedical Segmentation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为SynDiff的医学图像分割框架,该框架结合文本引导的合成数据生成和高效的扩散模型,有效解决医学图像分割中数据稀缺问题,提高分割准确性和实时性,适用于资源有限的医疗场景。

arXiv:2507.15361v1 Announce Type: cross Abstract: Medical image segmentation suffers from data scarcity, particularly in polyp detection where annotation requires specialized expertise. We present SynDiff, a framework combining text-guided synthetic data generation with efficient diffusion-based segmentation. Our approach employs latent diffusion models to generate clinically realistic synthetic polyps through text-conditioned inpainting, augmenting limited training data with semantically diverse samples. Unlike traditional diffusion methods requiring iterative denoising, we introduce direct latent estimation enabling single-step inference with T x computational speedup. On CVC-ClinicDB, SynDiff achieves 96.0% Dice and 92.9% IoU while maintaining real-time capability suitable for clinical deployment. The framework demonstrates that controlled synthetic augmentation improves segmentation robustness without distribution shift. SynDiff bridges the gap between data-hungry deep learning models and clinical constraints, offering an efficient solution for deployment in resourcelimited medical settings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

医学图像分割 合成数据生成 扩散模型 实时性 医疗应用
相关文章