cs.AI updates on arXiv.org 07月22日 12:34
SimdBench: Benchmarking Large Language Models for SIMD-Intrinsic Code Generation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出了SimdBench,首个专门针对SIMD代码生成的基准测试,并评估了18种LLM在该测试上的表现,揭示了LLM在SIMD代码生成中的潜力与挑战。

arXiv:2507.15224v1 Announce Type: cross Abstract: SIMD (Single Instruction Multiple Data) instructions and their compiler intrinsics are widely supported by modern processors to accelerate performance-critical tasks. SIMD intrinsic programming, a trade-off between coding productivity and high performance, is widely used in the development of mainstream performance-critical libraries and daily computing tasks. Large Language Models (LLMs), which have demonstrated strong and comprehensive capabilities in code generation, show promise in assisting programmers with the challenges of SIMD intrinsic programming. However, existing code-generation benchmarks focus on only scalar code, and it is unclear how LLMs perform in generating vectorized code using SIMD intrinsics. To fill this gap, we propose SimdBench, the first code benchmark specifically designed for SIMD-intrinsic code generation, comprising 136 carefully crafted tasks and targeting five representative SIMD intrinsics: SSE (x86 Streaming SIMD Extension), AVX (x86 Advanced Vector Extension), Neon (ARM Advanced SIMD Extension), SVE (ARM Scalable Vector Extension), and RVV (RISC-V Vector Extension). We conduct a systematic evaluation (measuring both correctness and performance) of 18 representative LLMs on SimdBench, resulting in a series of novel and insightful findings. Our evaluation results demonstrate that LLMs exhibit a universal decrease in pass@k during SIMD-intrinsic code generation compared to scalar-code generation. Our in-depth analysis highlights promising directions for the further advancement of LLMs in the challenging domain of SIMD-intrinsic code generation. SimdBench is fully open source at https://anonymous.4open.science/r/SimdBench-1B3F/ to benefit the broader research community.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SIMD代码生成 LLM性能评估 代码基准测试
相关文章