cs.AI updates on arXiv.org 07月22日 12:34
ProofCompass: Enhancing Specialized Provers with LLM Guidance
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了ProofCompass,一种基于大型语言模型引导的混合方法,通过优化现有专用证明方法,实现了在形式定理证明中的高效计算和准确性提升。

arXiv:2507.14335v1 Announce Type: new Abstract: Language models have become increasingly powerful tools for formal mathematical reasoning. However, most existing approaches rely exclusively on either large general-purpose models or smaller specialized models, each with distinct limitations, while training specialized large models still requires significant computational resources. This paper introduces ProofCompass, a novel hybrid methodology that achieves remarkable computational efficiency by strategically guiding existing specialized prover methods, such as DeepSeek-Prover-v1.5-RL (DSP-v1.5) with a Large Language Model (LLM) without requiring additional model training. The LLM provides natural language proof strategies and analyzes failed attempts to select intermediate lemmas, enabling effective problem decomposition. On the miniF2F benchmark, ProofCompass demonstrates substantial resource efficiency: it outperforms DSP-v1.5 ($54.9\% \rightarrow 55.3\%$) while using 25x fewer attempts ($3200 \rightarrow 128$). Our synergistic approach paves the way for simultaneously improving computational efficiency and accuracy in formal theorem proving.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ProofCompass 数学推理 大型语言模型 证明方法 计算效率
相关文章