MarkTechPost@AI 07月21日 12:35
Building a Smart Python-to-R Code Converter with Gemini AI-Powered Validation and Feedback
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一款智能Python转R代码转换器,该工具集成了Google的Gemini API,能够对转换后的R代码进行校验和优化建议。文章首先阐述了转换逻辑,将Python函数、库和语法模式映射到R语言的对应项。随后,重点介绍了如何利用Gemini AI来评估R代码的转换质量,提供评分、改进建议乃至优化后的代码。通过结合静态转换规则与动态AI分析,该工具旨在提升Python到R代码转换的准确性和效率,为用户提供更可靠的代码迁移方案。

🌐 **跨语言代码转换核心**:该工具通过预定义的映射规则,将Python中的常用库(如pandas、numpy、matplotlib)和函数(如DataFrame、read_csv、plot)转换为R语言中的对应功能(如library(dplyr)、read.csv、geom_line),并处理了如True/False到TRUE/FALSE、len()到length()等语法差异,为Python代码向R的迁移奠定了基础。

🧠 **Gemini API智能校验**:利用Gemini API,该转换器能够对生成的R代码进行深度校验。它不仅评估转换的准确性(评分0-100),还能识别潜在错误,提供具体的改进建议,甚至生成优化后的R代码,确保转换后的代码符合R语言的最佳实践和统计准确性。

📈 **可视化与数据处理转换**:特别针对数据分析中常用的可视化库matplotlib和seaborn,工具将其绘图函数(如plt.plot、sns.scatterplot)转换为ggplot2的语法(如geom_line、geom_point),并处理了图表标题、轴标签等细节,同时将pandas的数据操作(如数据筛选、排序)转换为dplyr的表达方式,增强了代码的可读性和效率。

🛠️ **全流程自动化与用户体验**:从导入语句的转换到函数调用的替换,再到复杂的Pandas操作和Matplotlib绘图的适配,最后通过Gemini API进行智能校验,整个流程高度自动化。用户只需提供Python代码,即可获得经过优化的R代码,大大简化了跨语言迁移的复杂性。

In this tutorial, we delve into the creation of an intelligent Python-to-R code converter that integrates Google’s free Gemini API for validation and improvement suggestions. We start by defining the conversion logic, mapping Python functions, libraries, and syntactic patterns to their closest R equivalents. Then, we leverage Gemini AI to assess the quality of our R translations, giving us validation scores, improvement suggestions, and even refined R code. By combining static conversion rules with dynamic AI-driven analysis, we aim to produce more accurate and efficient R code directly from Python scripts.

import reimport requestsimport jsonimport osfrom typing import Dict, List, Tuple, Optionalimport osos.environ['GEMINI_API_KEY'] = 'Use Your Own API Key'

We begin by importing essential Python libraries, such as re, requests, and json, for handling HTTP requests and data processing. We also set the Gemini API key using an environment variable, allowing secure access to Google’s AI services for code validation.

class GeminiValidator:    """    Uses Google's free Gemini API to validate and improve R code conversions    """    def __init__(self, api_key: str = None):        """        Initialize with Gemini API key        Get your free API key from: https://aistudio.google.com/        """        self.api_key = api_key or os.getenv('GEMINI_API_KEY')        if not self.api_key:            print("  No Gemini API key provided. Set GEMINI_API_KEY environment variable")            print("   or get a free key from: https://aistudio.google.com/")        self.base_url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"    def validate_conversion(self, python_code: str, r_code: str) -> Dict:        """        Use Gemini to validate the Python to R conversion        """        if not self.api_key:            return {                "validation_score": "N/A",                "suggestions": ["Set up Gemini API key for validation"],                "improved_code": r_code,                "error": "No API key provided"            }        prompt = f"""        You are an expert in both Python and R programming languages, especially for statistical analysis.        I have converted Python code to R code. Please validate this conversion and provide feedback.        ORIGINAL PYTHON CODE:        ```python        {python_code}        ```        CONVERTED R CODE:        ```r        {r_code}        ```        Please analyze the conversion and provide:        1. A validation score (0-100) for accuracy        2. List of any errors or issues found        3. Suggestions for improvement        4. An improved version of the R code if needed        Focus on:        - Correct function mappings (pandas to dplyr, numpy to base R, etc.)        - Proper R syntax and idioms        - Statistical accuracy        - Code efficiency and best practices        Respond in JSON format:        {{            "validation_score": <number>,            "issues_found": [<list of issues>],            "suggestions": [<list of suggestions>],            "improved_code": "<improved R code>",            "summary": "<brief summary of the conversion quality>"        }}        """        try:            headers = {                'Content-Type': 'application/json',            }            data = {                "contents": [{                    "parts": [{                        "text": prompt                    }]                }]            }            response = requests.post(                f"{self.base_url}?key={self.api_key}",                headers=headers,                json=data,                timeout=30            )            if response.status_code == 200:                result = response.json()                text_response = result['candidates'][0]['content']['parts'][0]['text']                try:                    text_response = re.sub(r'```json\n?', '', text_response)                    text_response = re.sub(r'\n?```', '', text_response)                    validation_result = json.loads(text_response)                    return validation_result                except json.JSONDecodeError:                    return {                        "validation_score": "N/A",                        "issues_found": ["Could not parse Gemini response"],                        "suggestions": [text_response],                        "improved_code": r_code,                        "summary": "Gemini response received but could not be parsed as JSON"                    }            else:                return {                    "validation_score": "N/A",                    "issues_found": [f"API Error: {response.status_code}"],                    "suggestions": ["Check API key and internet connection"],                    "improved_code": r_code,                    "summary": f"API request failed with status {response.status_code}"                }        except Exception as e:            return {                "validation_score": "N/A",                "issues_found": [f"Exception: {str(e)}"],                "suggestions": ["Check API key and internet connection"],                "improved_code": r_code,                "summary": f"Error during validation: {str(e)}"            }

We define the GeminiValidator class to handle the validation of our R code using Google’s Gemini API. Inside it, we craft a detailed prompt that contains both the original Python code and the converted R code, asking Gemini to evaluate the accuracy, suggest improvements, and even rewrite the R code if necessary. We then send this prompt to the Gemini endpoint & parse the JSON response to extract meaningful feedback for improving our code conversion.

class EnhancedPythonToRConverter:    """    Enhanced Python to R converter with Gemini AI validation    """    def __init__(self, gemini_api_key: str = None):        self.validator = GeminiValidator(gemini_api_key)        self.import_mappings = {            'pandas': 'library(dplyr)\nlibrary(tidyr)\nlibrary(readr)',            'numpy': 'library(base)',            'matplotlib.pyplot': 'library(ggplot2)',            'seaborn': 'library(ggplot2)\nlibrary(RColorBrewer)',            'scipy.stats': 'library(stats)',            'sklearn': 'library(caret)\nlibrary(randomForest)\nlibrary(e1071)',            'statsmodels': 'library(stats)\nlibrary(lmtest)',            'plotly': 'library(plotly)',        }        self.function_mappings = {            'pd.DataFrame': 'data.frame',            'pd.read_csv': 'read.csv',            'pd.read_excel': 'read_excel',            'df.head': 'head',            'df.tail': 'tail',            'df.shape': 'dim',            'df.info': 'str',            'df.describe': 'summary',            'df.mean': 'mean',            'df.median': 'median',            'df.std': 'sd',            'df.var': 'var',            'df.sum': 'sum',            'df.count': 'length',            'df.groupby': 'group_by',            'df.merge': 'merge',            'df.drop': 'select',            'df.dropna': 'na.omit',            'df.fillna': 'replace_na',            'df.sort_values': 'arrange',            'df.value_counts': 'table',            'np.array': 'c',            'np.mean': 'mean',            'np.median': 'median',            'np.std': 'sd',            'np.var': 'var',            'np.sum': 'sum',            'np.min': 'min',            'np.max': 'max',            'np.sqrt': 'sqrt',            'np.log': 'log',            'np.exp': 'exp',            'np.random.normal': 'rnorm',            'np.random.uniform': 'runif',            'np.linspace': 'seq',            'np.arange': 'seq',            'plt.figure': 'ggplot',            'plt.plot': 'geom_line',            'plt.scatter': 'geom_point',            'plt.hist': 'geom_histogram',            'plt.bar': 'geom_bar',            'plt.boxplot': 'geom_boxplot',            'plt.show': 'print',            'sns.scatterplot': 'geom_point',            'sns.histplot': 'geom_histogram',            'sns.boxplot': 'geom_boxplot',            'sns.heatmap': 'geom_tile',            'scipy.stats.ttest_ind': 't.test',            'scipy.stats.chi2_contingency': 'chisq.test',            'scipy.stats.pearsonr': 'cor.test',            'scipy.stats.spearmanr': 'cor.test',            'scipy.stats.normaltest': 'shapiro.test',            'stats.ttest_ind': 't.test',            'sklearn.linear_model.LinearRegression': 'lm',            'sklearn.ensemble.RandomForestRegressor': 'randomForest',            'sklearn.model_selection.train_test_split': 'sample',        }        self.syntax_patterns = [            (r'\bTrue\b', 'TRUE'),            (r'\bFalse\b', 'FALSE'),            (r'\bNone\b', 'NULL'),            (r'\blen\(', 'length('),            (r'range\((\d+)\)', r'1:\1'),            (r'range\((\d+),\s*(\d+)\)', r'\1:\2'),            (r'\.split\(', '.strsplit('),            (r'\.strip\(\)', '.str_trim()'),            (r'\.lower\(\)', '.str_to_lower()'),            (r'\.upper\(\)', '.str_to_upper()'),            (r'\[0\]', '[1]'),            (r'f"([^"]*)"', r'paste0("\1")'),            (r"f'([^']*)'", r"paste0('\1')"),        ]    def convert_imports(self, code: str) -> str:        """Convert Python import statements to R library statements."""        lines = code.split('\n')        converted_lines = []        for line in lines:            line = line.strip()            if line.startswith('import ') or line.startswith('from '):                if ' as ' in line:                    if 'import' in line and 'as' in line:                        parts = line.split(' as ')                        module = parts[0].replace('import ', '').strip()                        if module in self.import_mappings:                            converted_lines.append(f"# {line}")                            converted_lines.append(self.import_mappings[module])                        else:                            converted_lines.append(f"# {line} # No direct R equivalent")                    elif 'from' in line and 'import' in line and 'as' in line:                        converted_lines.append(f"# {line} # Handle specific imports manually")                elif line.startswith('from '):                    parts = line.split(' import ')                    module = parts[0].replace('from ', '').strip()                    if module in self.import_mappings:                        converted_lines.append(f"# {line}")                        converted_lines.append(self.import_mappings[module])                    else:                        converted_lines.append(f"# {line} # No direct R equivalent")                else:                    module = line.replace('import ', '').strip()                    if module in self.import_mappings:                        converted_lines.append(f"# {line}")                        converted_lines.append(self.import_mappings[module])                    else:                        converted_lines.append(f"# {line} # No direct R equivalent")            else:                converted_lines.append(line)        return '\n'.join(converted_lines)    def convert_functions(self, code: str) -> str:        """Convert Python function calls to R equivalents."""        for py_func, r_func in self.function_mappings.items():            code = code.replace(py_func, r_func)        return code    def apply_syntax_patterns(self, code: str) -> str:        """Apply regex patterns to convert Python syntax to R syntax."""        for pattern, replacement in self.syntax_patterns:            code = re.sub(pattern, replacement, code)        return code    def convert_pandas_operations(self, code: str) -> str:        """Convert common pandas operations to dplyr/tidyr equivalents."""        code = re.sub(r'df\[[\'"](.*?)[\'"]\]', r'df$\1', code)        code = re.sub(r'df\.(\w+)', r'df$\1', code)        code = re.sub(r'df\[df\[[\'"](.*?)[\'"]\]\s*([><=!]+)\s*([^]]+)\]', r'df[df$\1 \2 \3, ]', code)        return code    def convert_plotting(self, code: str) -> str:        """Convert matplotlib/seaborn plotting to ggplot2."""        conversions = [            (r'plt\.figure\(figsize=\((\d+),\s*(\d+)\)\)', r'# Set figure size in ggplot theme'),            (r'plt\.title\([\'"](.*?)[\'\"]\)', r'+ ggtitle("\1")'),            (r'plt\.xlabel\([\'"](.*?)[\'\"]\)', r'+ xlab("\1")'),            (r'plt\.ylabel\([\'"](.*?)[\'\"]\)', r'+ ylab("\1")'),            (r'plt\.legend\(\)', r'+ theme(legend.position="right")'),            (r'plt\.grid\(True\)', r'+ theme(panel.grid.major = element_line())'),        ]        for pattern, replacement in conversions:            code = re.sub(pattern, replacement, code)        return code    def add_r_context(self, code: str) -> str:        """Add R-specific context and comments."""        r_header = '''# R Statistical Analysis Code# Converted from Python using Enhanced Converter with Gemini AI Validation# Install required packages: install.packages(c("dplyr", "ggplot2", "tidyr", "readr"))'''        return r_header + code    def convert_code(self, python_code: str) -> str:        """Main conversion method that applies all transformations."""        code = python_code.strip()        code = self.convert_imports(code)        code = self.convert_functions(code)        code = self.convert_pandas_operations(code)        code = self.convert_plotting(code)        code = self.apply_syntax_patterns(code)        code = self.add_r_context(code)        return code    def convert_and_validate(self, python_code: str, use_gemini: bool = True) -> Dict:        """        Convert Python code to R and validate with Gemini AI        """        r_code = self.convert_code(python_code)        result = {            "original_python": python_code,            "converted_r": r_code,            "validation": None        }        if use_gemini and self.validator.api_key:            print(" Validating conversion with Gemini AI...")            validation = self.validator.validate_conversion(python_code, r_code)            result["validation"] = validation            if validation.get("improved_code") and validation.get("improved_code") != r_code:                result["final_r_code"] = validation["improved_code"]            else:                result["final_r_code"] = r_code        else:            result["final_r_code"] = r_code            if not self.validator.api_key:                result["validation"] = {"note": "Set GEMINI_API_KEY for AI validation"}        return result    def print_results(self, results: Dict):        """Pretty print the conversion results"""        print("=" * 80)        print(" ORIGINAL PYTHON CODE")        print("=" * 80)        print(results["original_python"])        print("\n" + "=" * 80)        print(" CONVERTED R CODE")        print("=" * 80)        print(results["final_r_code"])        if results.get("validation"):            validation = results["validation"]            print("\n" + "=" * 80)            print(" GEMINI AI VALIDATION")            print("=" * 80)            if validation.get("validation_score"):                print(f" Score: {validation['validation_score']}/100")            if validation.get("summary"):                print(f" Summary: {validation['summary']}")            if validation.get("issues_found"):                print("\n  Issues Found:")                for issue in validation["issues_found"]:                    print(f"   • {issue}")            if validation.get("suggestions"):                print("\n Suggestions:")                for suggestion in validation["suggestions"]:                    print(f"   • {suggestion}")

We define the EnhancedPythonToRConverter class to handle the entire transformation pipeline from Python to R. Inside the constructor, we map key libraries, functions, and syntax patterns between the two languages. We then create modular methods to convert import statements, function calls, pandas operations, and matplotlib plots to their R equivalents. Finally, we integrate Gemini AI to automatically validate the translated R code and print improvement suggestions, enabling us to enhance conversion accuracy and reliability with a single method call.

def setup_gemini_key():    """    Instructions for setting up Gemini API key    """    print(" SETTING UP GEMINI API KEY")    print("=" * 50)    print("1. Go to https://aistudio.google.com/")    print("2. Sign in with your Google account")    print("3. Click 'Get API Key'")    print("4. Create a new API key")    print("5. Copy the key and set it as environment variable:")    print("   For Colab: import os; os.environ['GEMINI_API_KEY'] = 'your_key_here'")    print("   For local: export GEMINI_API_KEY='your_key_here'")    print("\n The API is FREE to use within generous limits!")def demo_with_gemini():    """    Demo function that shows how to use the enhanced converter    """    print(" ENHANCED PYTHON TO R CONVERTER WITH GEMINI AI")    print("=" * 60)    api_key = os.getenv('GEMINI_API_KEY')    if not api_key:        print("  No Gemini API key found. Running without validation.")        setup_gemini_key()        print("\n" + "=" * 60)    converter = EnhancedPythonToRConverter(api_key)    python_example = '''import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom scipy import stats# Load and analyze datadf = pd.read_csv('sales_data.csv')print(df.head())print(df.describe())# Statistical analysismean_sales = df['sales'].mean()std_sales = df['sales'].std()correlation = df['sales'].corr(df['marketing_spend'])# Data filtering and groupinghigh_sales = df[df['sales'] > mean_sales]monthly_avg = df.groupby('month')['sales'].mean()# Visualizationplt.figure(figsize=(10, 6))plt.scatter(df['marketing_spend'], df['sales'])plt.title('Sales vs Marketing Spend')plt.xlabel('Marketing Spend')plt.ylabel('Sales')plt.show()# Statistical testt_stat, p_value = stats.ttest_ind(df['sales'], df['competitor_sales'])print(f"T-test result: {t_stat:.3f}, p-value: {p_value:.3f}")'''    results = converter.convert_and_validate(python_example, use_gemini=bool(api_key))    converter.print_results(results)    return results

We create a helper function, setup_gemini_key(), to guide users in generating and setting up their free Gemini API key, ensuring they can unlock AI validation features effortlessly. In the demo_with_gemini() function, we demonstrate the full power of the converter by processing a sample Python data analysis script. We run the conversion, invoke Gemini AI for validation (if the API key is available), and print detailed feedback, showcasing how easily we can transform and verify Python code in R.

def colab_setup():    """    Easy setup function for Google Colab    """    print(" GOOGLE COLAB SETUP")    print("=" * 40)    print("1. Run this cell to install dependencies:")    print("   !pip install requests")    print("\n2. Set your Gemini API key:")    print("   import os")    print("   os.environ['GEMINI_API_KEY'] = 'your_key_here'")    print("\n3. Run the demo:")    print("   results = demo_with_gemini()")if __name__ == "__main__":    demo_with_gemini()

We provide a convenient colab_setup() function to help users quickly configure their environment in Google Colab. It includes step-by-step instructions for installing dependencies, setting the Gemini API key, and running the demo. Finally, in the __main__ block, we call demo_with_gemini() to automatically execute the conversion and validation pipeline when the script is run directly.

In conclusion, we’ve built a powerful tool that translates Python code to R and also verifies and enhances it using Gemini AI. We walk through the conversion of imports, function mappings, DataFrame operations, and plotting routines, while Gemini provides a second layer of validation to ensure accuracy and best practices. With this system in place, we can confidently convert analytical scripts from Python to R, making our workflow smoother and enhancing our cross-language capabilities.


Check out the CODES. All credit for this research goes to the researchers of this project.

Sponsorship Opportunity: Reach the most influential AI developers in US and Europe. 1M+ monthly readers, 500K+ community builders, infinite possibilities. [Explore Sponsorship]

The post Building a Smart Python-to-R Code Converter with Gemini AI-Powered Validation and Feedback appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Python R语言 代码转换 Gemini API 人工智能 数据分析
相关文章