cs.AI updates on arXiv.org 07月21日 12:06
Self-supervised learning on gene expression data
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了自监督学习方法在基因表达数据表型预测中的应用,通过实验证明其在减少对标注数据依赖的同时,有效提高了预测准确率。

arXiv:2507.13912v1 Announce Type: cross Abstract: Predicting phenotypes from gene expression data is a crucial task in biomedical research, enabling insights into disease mechanisms, drug responses, and personalized medicine. Traditional machine learning and deep learning rely on supervised learning, which requires large quantities of labeled data that are costly and time-consuming to obtain in the case of gene expression data. Self-supervised learning has recently emerged as a promising approach to overcome these limitations by extracting information directly from the structure of unlabeled data. In this study, we investigate the application of state-of-the-art self-supervised learning methods to bulk gene expression data for phenotype prediction. We selected three self-supervised methods, based on different approaches, to assess their ability to exploit the inherent structure of the data and to generate qualitative representations which can be used for downstream predictive tasks. By using several publicly available gene expression datasets, we demonstrate how the selected methods can effectively capture complex information and improve phenotype prediction accuracy. The results obtained show that self-supervised learning methods can outperform traditional supervised models besides offering significant advantage by reducing the dependency on annotated data. We provide a comprehensive analysis of the performance of each method by highlighting their strengths and limitations. We also provide recommendations for using these methods depending on the case under study. Finally, we outline future research directions to enhance the application of self-supervised learning in the field of gene expression data analysis. This study is the first work that deals with bulk RNA-Seq data and self-supervised learning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自监督学习 基因表达 表型预测 RNA-Seq 机器学习
相关文章