cs.AI updates on arXiv.org 07月21日 12:06
RAG-based Architectures for Drug Side Effect Retrieval in LLMs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出GraphRAG模型,结合药物副作用知识库,显著提高LLMs在药物安全性监测中的应用准确性。

arXiv:2507.13822v1 Announce Type: cross Abstract: Drug side effects are a major global health concern, necessitating advanced methods for their accurate detection and analysis. While Large Language Models (LLMs) offer promising conversational interfaces, their inherent limitations, including reliance on black-box training data, susceptibility to hallucinations, and lack of domain-specific knowledge, hinder their reliability in specialized fields like pharmacovigilance. To address this gap, we propose two architectures: Retrieval-Augmented Generation (RAG) and GraphRAG, which integrate comprehensive drug side effect knowledge into a Llama 3 8B language model. Through extensive evaluations on 19,520 drug side effect associations (covering 976 drugs and 3,851 side effect terms), our results demonstrate that GraphRAG achieves near-perfect accuracy in drug side effect retrieval. This framework offers a highly accurate and scalable solution, signifying a significant advancement in leveraging LLMs for critical pharmacovigilance applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GraphRAG 药物副作用 LLMs 药物安全性监测 人工智能
相关文章