cs.AI updates on arXiv.org 07月21日 12:06
Localized FNO for Spatiotemporal Hemodynamic Upsampling in Aneurysm MRI
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为LoFNO的3D架构,通过结合几何先验和神经网络,提升磁共振血流成像的空间和时间分辨率,从而更精确预测脑动脉瘤破裂风险,指导治疗。

arXiv:2507.13789v1 Announce Type: cross Abstract: Hemodynamic analysis is essential for predicting aneurysm rupture and guiding treatment. While magnetic resonance flow imaging enables time-resolved volumetric blood velocity measurements, its low spatiotemporal resolution and signal-to-noise ratio limit its diagnostic utility. To address this, we propose the Localized Fourier Neural Operator (LoFNO), a novel 3D architecture that enhances both spatial and temporal resolution with the ability to predict wall shear stress (WSS) directly from clinical imaging data. LoFNO integrates Laplacian eigenvectors as geometric priors for improved structural awareness on irregular, unseen geometries and employs an Enhanced Deep Super-Resolution Network (EDSR) layer for robust upsampling. By combining geometric priors with neural operator frameworks, LoFNO de-noises and spatiotemporally upsamples flow data, achieving superior velocity and WSS predictions compared to interpolation and alternative deep learning methods, enabling more precise cerebrovascular diagnostics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LoFNO 脑动脉瘤 磁共振成像 血流动力学 深度学习
相关文章