cs.AI updates on arXiv.org 07月21日 12:06
Learning Spectral Diffusion Prior for Hyperspectral Image Reconstruction
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于扩散模型的光谱扩散先验(SDP)和高光谱先验注入模块(SPIM),有效改善高光谱图像重建的高频细节捕捉,实验结果表明该方法在MST和BISRNet上均优于现有网络。

arXiv:2507.13769v1 Announce Type: cross Abstract: Hyperspectral image (HSI) reconstruction aims to recover 3D HSI from its degraded 2D measurements. Recently great progress has been made in deep learning-based methods, however, these methods often struggle to accurately capture high-frequency details of the HSI. To address this issue, this paper proposes a Spectral Diffusion Prior (SDP) that is implicitly learned from hyperspectral images using a diffusion model. Leveraging the powerful ability of the diffusion model to reconstruct details, this learned prior can significantly improve the performance when injected into the HSI model. To further improve the effectiveness of the learned prior, we also propose the Spectral Prior Injector Module (SPIM) to dynamically guide the model to recover the HSI details. We evaluate our method on two representative HSI methods: MST and BISRNet. Experimental results show that our method outperforms existing networks by about 0.5 dB, effectively improving the performance of HSI reconstruction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

高光谱图像 重建 扩散模型 光谱扩散先验 图像处理
相关文章