cs.AI updates on arXiv.org 07月21日 12:06
Point of Interest Recommendation: Pitfalls and Viable Solutions
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文讨论了POI推荐问题现状,分析了数据集、算法和评估方法等方面的不足,并提出了未来研究方向。

arXiv:2507.13725v1 Announce Type: cross Abstract: Point of interest (POI) recommendation can play a pivotal role in enriching tourists' experiences by suggesting context-dependent and preference-matching locations and activities, such as restaurants, landmarks, itineraries, and cultural attractions. Unlike some more common recommendation domains (e.g., music and video), POI recommendation is inherently high-stakes: users invest significant time, money, and effort to search, choose, and consume these suggested POIs. Despite the numerous research works in the area, several fundamental issues remain unresolved, hindering the real-world applicability of the proposed approaches. In this paper, we discuss the current status of the POI recommendation problem and the main challenges we have identified. The first contribution of this paper is a critical assessment of the current state of POI recommendation research and the identification of key shortcomings across three main dimensions: datasets, algorithms, and evaluation methodologies. We highlight persistent issues such as the lack of standardized benchmark datasets, flawed assumptions in the problem definition and model design, and inadequate treatment of biases in the user behavior and system performance. The second contribution is a structured research agenda that, starting from the identified issues, introduces important directions for future work related to multistakeholder design, context awareness, data collection, trustworthiness, novel interactions, and real-world evaluation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

POI推荐 研究现状 挑战 研究方向 数据集
相关文章