cs.AI updates on arXiv.org 07月21日 12:06
Air Traffic Controller Task Demand via Graph Neural Networks: An Interpretable Approach to Airspace Complexity
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种可解释的图神经网络框架,用于近程空中交通管制员(ATCO)任务需求的实时评估。通过分析静态交通场景中的交互,模型预测未来清障数量和指令,并系统性地降低特定飞机的影响以评估任务需求分数。该框架在性能上优于现有基准,为控制器培训和空域重新设计提供新工具。

arXiv:2507.13423v1 Announce Type: cross Abstract: Real-time assessment of near-term Air Traffic Controller (ATCO) task demand is a critical challenge in an increasingly crowded airspace, as existing complexity metrics often fail to capture nuanced operational drivers beyond simple aircraft counts. This work introduces an interpretable Graph Neural Network (GNN) framework to address this gap. Our attention-based model predicts the number of upcoming clearances, the instructions issued to aircraft by ATCOs, from interactions within static traffic scenarios. Crucially, we derive an interpretable, per-aircraft task demand score by systematically ablating aircraft and measuring the impact on the model's predictions. Our framework significantly outperforms an ATCO-inspired heuristic and is a more reliable estimator of scenario complexity than established baselines. The resulting tool can attribute task demand to specific aircraft, offering a new way to analyse and understand the drivers of complexity for applications in controller training and airspace redesign.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ATCO任务需求 图神经网络 空中交通管制
相关文章