cs.AI updates on arXiv.org 07月21日 12:06
Multi-Centre Validation of a Deep Learning Model for Scoliosis Assessment
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

研究评估了一款深度学习软件在脊柱侧弯Cobb角测量中的准确性,结果显示其与专业放射科医生的测量结果高度一致,有望提高临床效率和准确性。

arXiv:2507.14093v1 Announce Type: cross Abstract: Scoliosis affects roughly 2 to 4 percent of adolescents, and treatment decisions depend on precise Cobb angle measurement. Manual assessment is time consuming and subject to inter observer variation. We conducted a retrospective, multi centre evaluation of a fully automated deep learning software (Carebot AI Bones, Spine Measurement functionality; Carebot s.r.o.) on 103 standing anteroposterior whole spine radiographs collected from ten hospitals. Two musculoskeletal radiologists independently measured each study and served as reference readers. Agreement between the AI and each radiologist was assessed with Bland Altman analysis, mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient, and Cohen kappa for four grade severity classification. Against Radiologist 1 the AI achieved an MAE of 3.89 degrees (RMSE 4.77 degrees) with a bias of 0.70 degrees and limits of agreement from minus 8.59 to plus 9.99 degrees. Against Radiologist 2 the AI achieved an MAE of 3.90 degrees (RMSE 5.68 degrees) with a bias of 2.14 degrees and limits from minus 8.23 to plus 12.50 degrees. Pearson correlations were r equals 0.906 and r equals 0.880 (inter reader r equals 0.928), while Cohen kappa for severity grading reached 0.51 and 0.64 (inter reader kappa 0.59). These results demonstrate that the proposed software reproduces expert level Cobb angle measurements and categorical grading across multiple centres, suggesting its utility for streamlining scoliosis reporting and triage in clinical workflows.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI 脊柱侧弯 深度学习 Cobb角测量 临床应用
相关文章