cs.AI updates on arXiv.org 07月21日 12:06
OrthoInsight: Rib Fracture Diagnosis and Report Generation Based on Multi-Modal Large Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为OrthoInsight的多模态深度学习框架,用于肋骨骨折的诊断和报告生成。该框架集成了YOLOv9模型进行骨折检测,医学知识图谱获取临床上下文,以及LLaVA语言模型生成诊断报告。在28,675个标注CT图像和专家报告中评估,该框架在诊断准确性、内容完整性、逻辑连贯性和临床指导价值方面表现优异,平均得分4.28,优于GPT-4和Claude-3等模型。

arXiv:2507.13993v1 Announce Type: cross Abstract: The growing volume of medical imaging data has increased the need for automated diagnostic tools, especially for musculoskeletal injuries like rib fractures, commonly detected via CT scans. Manual interpretation is time-consuming and error-prone. We propose OrthoInsight, a multi-modal deep learning framework for rib fracture diagnosis and report generation. It integrates a YOLOv9 model for fracture detection, a medical knowledge graph for retrieving clinical context, and a fine-tuned LLaVA language model for generating diagnostic reports. OrthoInsight combines visual features from CT images with expert textual data to deliver clinically useful outputs. Evaluated on 28,675 annotated CT images and expert reports, it achieves high performance across Diagnostic Accuracy, Content Completeness, Logical Coherence, and Clinical Guidance Value, with an average score of 4.28, outperforming models like GPT-4 and Claude-3. This study demonstrates the potential of multi-modal learning in transforming medical image analysis and providing effective support for radiologists.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多模态深度学习 肋骨骨折诊断 医学图像分析
相关文章