cs.AI updates on arXiv.org 07月21日 12:06
DUALRec: A Hybrid Sequential and Language Model Framework for Context-Aware Movie Recommendation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出DUALRec推荐系统,结合LSTM的时序建模能力和LLM的语义推理能力,通过实验证明其在电影推荐任务上优于基线模型,为更智能的推荐系统发展提供方向。

arXiv:2507.13957v1 Announce Type: cross Abstract: The modern recommender systems are facing an increasing challenge of modelling and predicting the dynamic and context-rich user preferences. Traditional collaborative filtering and content-based methods often struggle to capture the temporal patternings and evolving user intentions. While Large Language Models (LLMs) have gained gradual attention in recent years, by their strong semantic understanding and reasoning abilities, they are not inherently designed to model chronologically evolving user preference and intentions. On the other hand, for sequential models like LSTM (Long-Short-Term-Memory) which is good at capturing the temporal dynamics of user behaviour and evolving user preference over time, but still lacks a rich semantic understanding for comprehensive recommendation generation. In this study, we propose DUALRec (Dynamic User-Aware Language-based Recommender), a novel recommender that leverages the complementary strength of both models, which combines the temporal modelling abilities of LSTM networks with semantic reasoning power of the fine-tuned Large Language Models. The LSTM component will capture users evolving preference through their viewing history, while the fine-tuned LLM variants will leverage these temporal user insights to generate next movies that users might enjoy. Experimental results on MovieLens-1M dataset shows that the DUALRec model outperforms a wide range of baseline models, with comprehensive evaluation matrices of Hit Rate (HR@k), Normalized Discounted Cumulative Gain (NDCG@k), and genre similarity metrics. This research proposes a novel architecture that bridges the gap between temporal sequence modeling and semantic reasoning, and offers a promising direction for developing more intelligent and context-aware recommenders.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

推荐系统 LSTM LLM 时序建模 语义推理
相关文章