cs.AI updates on arXiv.org 07月21日 12:06
Physical models realizing the transformer architecture of large language models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章从物理角度探讨Transformer架构,在Fock空间中构建基于Hilbert空间的物理模型,为大型语言模型提供理论基础。

arXiv:2507.13354v1 Announce Type: cross Abstract: The introduction of the transformer architecture in 2017 (cf.\cite{VSP2017}) marked the most striking advancement in natural language processing. The transformer is a model architecture relying entirely on an attention mechanism to draw global dependencies between input and output. However, we believe there is a gap in our theoretical understanding of what the transformer is, and why it works physically. In this paper, from a physical perspective on modern chips, we construct physical models in the Fock space over the Hilbert space of tokens realizing large language models based on a transformer architecture as open quantum systems. Our physical models underlie the transformer architecture for large language models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Transformer架构 物理模型 自然语言处理
相关文章