arXiv:2410.05347v2 Announce Type: replace-cross Abstract: Although AlphaZero has achieved superhuman performance in board games, recent studies reveal its limitations in handling scenarios requiring a comprehensive understanding of the entire board, such as recognizing long-sequence patterns in Go. To address this challenge, we propose ResTNet, a network that interleaves residual and Transformer blocks to bridge local and global knowledge. ResTNet improves playing strength across multiple board games, increasing win rate from 54.6% to 60.8% in 9x9 Go, 53.6% to 60.9% in 19x19 Go, and 50.4% to 58.0% in 19x19 Hex. In addition, ResTNet effectively processes global information and tackles two long-sequence patterns in 19x19 Go, including circular pattern and ladder pattern. It reduces the mean square error for circular pattern recognition from 2.58 to 1.07 and lowers the attack probability against an adversary program from 70.44% to 23.91%. ResTNet also improves ladder pattern recognition accuracy from 59.15% to 80.01%. By visualizing attention maps, we demonstrate that ResTNet captures critical game concepts in both Go and Hex, offering insights into AlphaZero's decision-making process. Overall, ResTNet shows a promising approach to integrating local and global knowledge, paving the way for more effective AlphaZero-based algorithms in board games. Our code is available at https://rlg.iis.sinica.edu.tw/papers/restnet.