cs.AI updates on arXiv.org 07月21日 12:06
Improved DDIM Sampling with Moment Matching Gaussian Mixtures
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将高斯混合模型(GMM)作为逆转换算子(核)应用于去噪扩散隐式模型(DDIM)框架,通过约束GMM参数匹配DDPM的前向边缘的一阶和二阶中心矩,实现生成样本质量的提升。实验结果表明,GMM核在样本生成质量上优于传统DDIM,尤其在采样步数较少时效果显著。

arXiv:2311.04938v3 Announce Type: replace-cross Abstract: We propose using a Gaussian Mixture Model (GMM) as reverse transition operator (kernel) within the Denoising Diffusion Implicit Models (DDIM) framework, which is one of the most widely used approaches for accelerated sampling from pre-trained Denoising Diffusion Probabilistic Models (DDPM). Specifically we match the first and second order central moments of the DDPM forward marginals by constraining the parameters of the GMM. We see that moment matching is sufficient to obtain samples with equal or better quality than the original DDIM with Gaussian kernels. We provide experimental results with unconditional models trained on CelebAHQ and FFHQ and class-conditional models trained on ImageNet datasets respectively. Our results suggest that using the GMM kernel leads to significant improvements in the quality of the generated samples when the number of sampling steps is small, as measured by FID and IS metrics. For example on ImageNet 256x256, using 10 sampling steps, we achieve a FID of 6.94 and IS of 207.85 with a GMM kernel compared to 10.15 and 196.73 respectively with a Gaussian kernel.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

高斯混合模型 DDIM 样本生成质量 去噪扩散隐式模型 FID IS
相关文章