cs.AI updates on arXiv.org 07月21日 12:06
A segmented robot grasping perception neural network for edge AI
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了基于深度学习的机器人抓取技术,实现边缘计算下的实时抓取,并通过硬件优化技术验证了低功耗MCU在实时自主操作中的潜力。

arXiv:2507.13970v1 Announce Type: cross Abstract: Robotic grasping, the ability of robots to reliably secure and manipulate objects of varying shapes, sizes and orientations, is a complex task that requires precise perception and control. Deep neural networks have shown remarkable success in grasp synthesis by learning rich and abstract representations of objects. When deployed at the edge, these models can enable low-latency, low-power inference, making real-time grasping feasible in resource-constrained environments. This work implements Heatmap-Guided Grasp Detection, an end-to-end framework for the detection of 6-Dof grasp poses, on the GAP9 RISC-V System-on-Chip. The model is optimised using hardware-aware techniques, including input dimensionality reduction, model partitioning, and quantisation. Experimental evaluation on the GraspNet-1Billion benchmark validates the feasibility of fully on-chip inference, highlighting the potential of low-power MCUs for real-time, autonomous manipulation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器人抓取 边缘计算 深度学习 低功耗MCU 硬件优化
相关文章