arXiv:2407.01558v3 Announce Type: replace-cross Abstract: Most visual grounding solutions primarily focus on realistic images. However, applications involving synthetic images, such as Graphical User Interfaces (GUIs), remain limited. This restricts the development of autonomous computer vision-powered artificial intelligence (AI) agents for automatic application interaction. Enabling AI to effectively understand and interact with GUIs is crucial to advancing automation in software testing, accessibility, and human-computer interaction. In this work, we explore Instruction Visual Grounding (IVG), a multi-modal approach to object identification within a GUI. More precisely, given a natural language instruction and a GUI screen, IVG locates the coordinates of the element on the screen where the instruction should be executed. We propose two main methods: (1) IVGocr, which combines a Large Language Model (LLM), an object detection model, and an Optical Character Recognition (OCR) module; and (2) IVGdirect, which uses a multimodal architecture for end-to-end grounding. For each method, we introduce a dedicated dataset. In addition, we propose the Central Point Validation (CPV) metric, a relaxed variant of the classical Central Proximity Score (CPS) metric. Our final test dataset is publicly released to support future research.