cs.AI updates on arXiv.org 07月21日 12:06
DailyLLM: Context-Aware Activity Log Generation Using Multi-Modal Sensors and LLMs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为DailyLLM的活动日志生成和总结系统,该系统综合整合了来自智能手机和智能手表的多种传感器数据,通过轻量级LLM框架实现高效的活动日志生成。

arXiv:2507.13737v1 Announce Type: new Abstract: Rich and context-aware activity logs facilitate user behavior analysis and health monitoring, making them a key research focus in ubiquitous computing. The remarkable semantic understanding and generation capabilities of Large Language Models (LLMs) have recently created new opportunities for activity log generation. However, existing methods continue to exhibit notable limitations in terms of accuracy, efficiency, and semantic richness. To address these challenges, we propose DailyLLM. To the best of our knowledge, this is the first log generation and summarization system that comprehensively integrates contextual activity information across four dimensions: location, motion, environment, and physiology, using only sensors commonly available on smartphones and smartwatches. To achieve this, DailyLLM introduces a lightweight LLM-based framework that integrates structured prompting with efficient feature extraction to enable high-level activity understanding. Extensive experiments demonstrate that DailyLLM outperforms state-of-the-art (SOTA) log generation methods and can be efficiently deployed on personal computers and Raspberry Pi. Utilizing only a 1.5B-parameter LLM model, DailyLLM achieves a 17% improvement in log generation BERTScore precision compared to the 70B-parameter SOTA baseline, while delivering nearly 10x faster inference speed.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

活动日志 智能生成 LLM模型 智能手机 智能手表
相关文章