MarkTechPost@AI 5小时前
Model Context Protocol (MCP) for Enterprises: Secure Integration with AWS, Azure, and Google Cloud- 2025 Update
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Model Context Protocol (MCP)是Anthropic于2024年11月开源的跨云标准,旨在安全连接AI代理与企业各类工具、服务及数据。自发布以来,各大云厂商和AI平台纷纷推出首方MCP集成,生态系统快速扩张。MCP基于JSON-RPC 2.0,使AI系统能够发现并调用MCP兼容服务器暴露的函数、API或数据存储。它解决了工具集成中的“N×M”连接器问题,实现任何支持MCP的代理与兼容工具的安全、可预测交互。AWS、Azure、Google Cloud等云服务商,以及OpenAI、Google DeepMind等AI平台均已广泛采用MCP,推动AI agent工作流的标准化和高效化。

💡 **MCP作为跨云AI集成标准:** Model Context Protocol (MCP)是一个基于JSON-RPC 2.0的开源标准,由Anthropic在2024年11月推出,核心目标是实现AI系统(如大型语言模型)与各类工具、服务和数据之间的安全连接与调用。它通过消除“N×M”连接器问题,使得任何支持MCP的代理都能与MCP兼容的服务器进行安全、可预测的交互,极大地简化了AI agent与外部资源的集成。

🚀 **主流云服务商与AI平台广泛采用:** AWS、Microsoft Azure和Google Cloud都在积极推广和集成MCP。AWS推出了API MCP Server、MSK MCP Server和Price List MCP Server,支持多种AWS服务;Azure通过AI Foundry MCP Server和Copilot Studio实现与Microsoft 365工作流的无缝集成;Google Cloud则提供了MCP Toolbox for Databases和Vertex AI的MCP支持。OpenAI、Google DeepMind、Anthropic等领先AI平台也已将MCP集成到其SDK和产品中,推动了跨平台AI应用的互操作性。

🔒 **安全性与风险管理是关键:** 尽管MCP带来了便利,但其安全性不容忽视。文章强调了2025年的安全威胁,包括Prompt Injection、特权滥用、工具投毒等,并指出了近期发现的远程代码执行漏洞(CVE-2025-53110和CVE-2025-6514)。为应对这些风险,建议采取OAuth 2.0、TLS、精细化IAM权限控制、审计日志、零信任配置等安全措施,并及时更新受影响的库,限制对不受信任MCP端点的访问。

🌐 **生态系统快速扩展与应用场景:** MCP的生态系统正在快速增长,除了“三大云”之外,Replit、Zed、Sourcegraph、Codeium等开发者工具,以及Netflix、Databricks、Docusign、Litera等企业平台也开始集成MCP。这表明MCP不仅限于云服务,还在代码辅助、数据处理、合同自动化等多个领域展现出巨大的应用潜力,为构建复杂、可维护的Agentic工作流提供了强大的支持。

📈 **跨云集成最佳实践:** 文章总结了2025年的跨云集成最佳实践,涵盖了安全性(OAuth 2.0、TLS、IAM)、发现机制(动态能力发现)、Schema定义(JSON-RPC Schema)、性能优化(批处理、缓存、分页)以及测试和监控(OpenTelemetry、CloudWatch、Azure Monitor)。遵循这些实践有助于构建健壮、安全且高效的跨云AI集成解决方案。

The Model Context Protocol (MCP), open-sourced by Anthropic in November 2024, has rapidly become the cross-cloud standard for connecting AI agents to tools, services, and data across the enterprise landscape. Since its release, major cloud vendors and leading AI providers have shipped first-party MCP integrations, and independent platforms are quickly expanding the ecosystem.

1. MCP Overview & Ecosystem

What is MCP?

Who’s Adopting MCP?

2. AWS: MCP at Cloud Scale

What’s New (July 2025):

Integration Steps:

    Deploy the desired MCP server using Docker or ECS, leveraging official AWS guidance.Harden endpoints with TLS, Cognito, WAF, and IAM roles.Define API visibility/capabilities—e.g., msk.getClusterInfo.Issue OAuth tokens or IAM credentials for secure access.Connect with AI clients (Claude Desktop, OpenAI, Bedrock, etc.).Monitor via CloudWatch and OpenTelemetry for observability.Rotate credentials and review access policies regularly.

Why AWS Leads:

3. Microsoft Azure: MCP in Copilot & AI Foundry

What’s New:

Integration Steps:

    Build/launch an MCP server in Azure Container Apps or Azure Functions.Secure endpoints using TLS, Azure AD (OAuth), and RBAC.Publish agent for Copilot Studio or Claude integration.Connect to backend tools via MCP schemas: CosmosDB, Bing API, SQL, etc.Use Azure Monitor and Application Insights for telemetry and security monitoring.

Why Azure Stands Out:

4. Google Cloud: MCP Toolbox & Vertex AI

What’s New:

Integration Steps:

    Launch MCP Toolbox from Cloud Marketplace or deploy as a managed microservice.Secure with IAM, VPC Service Controls, and OAuth2.Register MCP tools and expose APIs for AI agent consumption.Invoke database operations (e.g., bigquery.runQuery) via Vertex AI or MCP-enabled LLMs.Audit all access via Cloud Audit Logs and Binary Authorization.

Why GCP Excels:

5. Cross-Cloud Best Practices

AreaBest Practices (2025)
SecurityOAuth 2.0, TLS, fine-grained IAM/AAD/Cognito roles, audit logs, Zero Trust config
DiscoveryDynamic MCP capability discovery at startup; schemas must be kept up-to-date
SchemaWell-defined JSON-RPC schemas with robust error/edge-case handling
PerformanceUse batching, caching, and paginated discovery for large tools lists
TestingTest invalid parameters, multi-agent concurrency, logging, and traceability
MonitoringExport telemetry via OpenTelemetry, CloudWatch, Azure Monitor, and App Insights

6. Security & Risk Management (2025 Threat Landscape)

Known Risks:

Recent Vulnerabilities:

7. Expanded Ecosystem: Beyond the “Big Three”

8. Example: AWS MSK MCP Integration Flow

    Deploy AWS MSK MCP server (use official AWS GitHub sample).Secure with Cognito (OAuth2), WAF, IAM.Configure available API actions and token rotation.Connect supported AI agent (Claude, OpenAI, Bedrock).Use agentic invocations, e.g., msk.getClusterInfo.Monitor and analyze with CloudWatch/OpenTelemetry.Iterate by adding new tool APIs; enforce least privilege.

9. Summary (July 2025)

The post Model Context Protocol (MCP) for Enterprises: Secure Integration with AWS, Azure, and Google Cloud- 2025 Update appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MCP AI集成 跨云 云服务 安全
相关文章