cs.AI updates on arXiv.org 07月18日 12:14
MC$^2$A: Enabling Algorithm-Hardware Co-Design for Efficient Markov Chain Monte Carlo Acceleration
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MC^2A算法与硬件协同设计框架,通过分析MCMC工作负载多样性,提出参数化硬件加速器架构,实现MCMC加速,并在多种应用领域取得显著性能提升。

arXiv:2507.12935v1 Announce Type: cross Abstract: An increasing number of applications are exploiting sampling-based algorithms for planning, optimization, and inference. The Markov Chain Monte Carlo (MCMC) algorithms form the computational backbone of this emerging branch of machine learning. Unfortunately, the high computational cost limits their feasibility for large-scale problems and real-world applications, and the existing MCMC acceleration solutions are either limited in hardware flexibility or fail to maintain efficiency at the system level across a variety of end-to-end applications. This paper introduces \textbf{MC$^2$A}, an algorithm-hardware co-design framework, enabling efficient and flexible optimization for MCMC acceleration. Firstly, \textbf{MC$^2$A} analyzes the MCMC workload diversity through an extension of the processor performance roofline model with a 3rd dimension to derive the optimal balance between the compute, sampling and memory parameters. Secondly, \textbf{MC$^2$A} proposes a parametrized hardware accelerator architecture with flexible and efficient support of MCMC kernels with a pipeline of ISA-programmable tree-structured processing units, reconfigurable samplers and a crossbar interconnect to support irregular access. Thirdly, the core of \textbf{MC$^2$A} is powered by a novel Gumbel sampler that eliminates exponential and normalization operations. In the end-to-end case study, \textbf{MC$^2$A} achieves an overall {$307.6\times$, $1.4\times$, $2.0\times$, $84.2\times$} speedup compared to the CPU, GPU, TPU and state-of-the-art MCMC accelerator. Evaluated on various representative MCMC workloads, this work demonstrates and exploits the feasibility of general hardware acceleration to popularize MCMC-based solutions in diverse application domains.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MCMC加速 算法与硬件协同设计 硬件加速器 性能提升 应用领域
相关文章