cs.AI updates on arXiv.org 07月18日 12:14
UPCORE: Utility-Preserving Coreset Selection for Balanced Unlearning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出UPCORE框架,通过选择性修剪遗忘集以减少模型退化,在删除信息与保持模型能力之间实现平衡。

arXiv:2502.15082v2 Announce Type: replace-cross Abstract: User specifications or legal frameworks often require information to be removed from pretrained models, including large language models (LLMs). This requires deleting or "forgetting" a set of data points from an already-trained model, which typically degrades its performance on other data points. Thus, a balance must be struck between removing information and keeping the model's other abilities intact, with a failure to balance this trade-off leading to poor deletion or an unusable model. To this end, we propose UPCORE (Utility-Preserving Coreset Selection), a method-agnostic data selection framework for mitigating collateral damage during unlearning. Finding that the model damage is correlated with the variance of the model's representations on the forget set, we selectively prune the forget set to remove outliers, thereby minimizing model degradation after unlearning. Across three standard unlearning methods, UPCORE consistently achieves a superior balance between the competing objectives of deletion efficacy and model preservation. To better evaluate this trade-off, we introduce a new metric, measuring the area-under-the-curve (AUC) across standard metrics. Our results show that UPCORE improves both standard metrics and AUC, benefiting from positive transfer between the coreset and pruned points while reducing negative transfer from the forget set to points outside of it.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

预训练模型 信息删除 模型性能 数据选择 UPCORE
相关文章