cs.AI updates on arXiv.org 07月18日 12:14
Determination of galaxy photometric redshifts using Conditional Generative Adversarial Networks (CGANs)
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出利用条件生成对抗网络(CGAN)进行星系光度红移测定,通过DES Y1数据测试,与MDN算法对比,显示CGAN在光度红移估计中的潜力。

arXiv:2501.06532v3 Announce Type: replace-cross Abstract: Accurate and reliable photometric redshift determination is one of the key aspects for wide-field photometric surveys. Determination of photometric redshift for galaxies, has been traditionally solved by use of machine-learning and artificial intelligence techniques trained on a calibration sample of galaxies, where both photometry and spectrometry are available. On this paper, we present a new algorithmic approach for determining photometric redshifts of galaxies using Conditional Generative Adversarial Networks (CGANs). The proposed implementation is able to determine both point-estimation and probability-density estimations for photometric redshifts. The methodology is tested with data from Dark Energy Survey (DES) Y1 data and compared with other existing algorithm such as a Mixture Density Network (MDN). Although results obtained show a superiority of MDN, CGAN quality-metrics are close to the MDN results, opening the door to the use of CGAN at photometric redshift estimation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CGAN 光度红移 星系 算法 DES Y1数据
相关文章