cs.AI updates on arXiv.org 07月18日 12:14
SEMT: Static-Expansion-Mesh Transformer Network Architecture for Remote Sensing Image Captioning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于Transformer的遥感图像字幕生成网络,通过静态扩展、记忆增强自注意力和网格Transformer等技术的集成与评估,在UCM-Caption和NWPU-Caption数据集上表现优异,为实际遥感图像系统应用提供潜力。

arXiv:2507.12845v1 Announce Type: cross Abstract: Image captioning has emerged as a crucial task in the intersection of computer vision and natural language processing, enabling automated generation of descriptive text from visual content. In the context of remote sensing, image captioning plays a significant role in interpreting vast and complex satellite imagery, aiding applications such as environmental monitoring, disaster assessment, and urban planning. This motivates us, in this paper, to present a transformer based network architecture for remote sensing image captioning (RSIC) in which multiple techniques of Static Expansion, Memory-Augmented Self-Attention, Mesh Transformer are evaluated and integrated. We evaluate our proposed models using two benchmark remote sensing image datasets of UCM-Caption and NWPU-Caption. Our best model outperforms the state-of-the-art systems on most of evaluation metrics, which demonstrates potential to apply for real-life remote sensing image systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

遥感图像 字幕生成 Transformer模型 图像字幕 自然语言处理
相关文章