cs.AI updates on arXiv.org 07月18日 12:14
MVA 2025 Small Multi-Object Tracking for Spotting Birds Challenge: Dataset, Methods, and Results
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了SMOT4SB挑战赛,通过利用时间信息解决单帧检测的局限性,并介绍了该挑战赛中的三个主要贡献:SMOT4SB数据集、SO-HOTA指标和MVA2025挑战赛,旨在推动小目标跟踪技术在无人机场景中的应用。

arXiv:2507.12832v1 Announce Type: cross Abstract: Small Multi-Object Tracking (SMOT) is particularly challenging when targets occupy only a few dozen pixels, rendering detection and appearance-based association unreliable. Building on the success of the MVA2023 SOD4SB challenge, this paper introduces the SMOT4SB challenge, which leverages temporal information to address limitations of single-frame detection. Our three main contributions are: (1) the SMOT4SB dataset, consisting of 211 UAV video sequences with 108,192 annotated frames under diverse real-world conditions, designed to capture motion entanglement where both camera and targets move freely in 3D; (2) SO-HOTA, a novel metric combining Dot Distance with HOTA to mitigate the sensitivity of IoU-based metrics to small displacements; and (3) a competitive MVA2025 challenge with 78 participants and 308 submissions, where the winning method achieved a 5.1x improvement over the baseline. This work lays a foundation for advancing SMOT in UAV scenarios with applications in bird strike avoidance, agriculture, fisheries, and ecological monitoring.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SMOT4SB 小目标跟踪 无人机场景 数据集 挑战赛
相关文章