cs.AI updates on arXiv.org 07月18日 12:14
City-VLM: Towards Multidomain Perception Scene Understanding via Multimodal Incomplete Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出首个多域感知户外场景理解数据集SVM-City,并设计City-VLM模型实现多模态融合,在户外场景理解任务中表现优异。

arXiv:2507.12795v1 Announce Type: cross Abstract: Scene understanding enables intelligent agents to interpret and comprehend their environment. While existing large vision-language models (LVLMs) for scene understanding have primarily focused on indoor household tasks, they face two significant limitations when applied to outdoor large-scale scene understanding. First, outdoor scenarios typically encompass larger-scale environments observed through various sensors from multiple viewpoints (e.g., bird view and terrestrial view), while existing indoor LVLMs mainly analyze single visual modalities within building-scale contexts from humanoid viewpoints. Second, existing LVLMs suffer from missing multidomain perception outdoor data and struggle to effectively integrate 2D and 3D visual information. To address the aforementioned limitations, we build the first multidomain perception outdoor scene understanding dataset, named \textbf{\underline{SVM-City}}, deriving from multi\textbf{\underline{S}}cale scenarios with multi\textbf{\underline{V}}iew and multi\textbf{\underline{M}}odal instruction tuning data. It contains $420$k images and $4, 811$M point clouds with $567$k question-answering pairs from vehicles, low-altitude drones, high-altitude aerial planes, and satellite. To effectively fuse the multimodal data in the absence of one modality, we introduce incomplete multimodal learning to model outdoor scene understanding and design the LVLM named \textbf{\underline{City-VLM}}. Multimodal fusion is realized by constructing a joint probabilistic distribution space rather than implementing directly explicit fusion operations (e.g., concatenation). Experimental results on three typical outdoor scene understanding tasks show City-VLM achieves $18.14 \%$ performance surpassing existing LVLMs in question-answering tasks averagely. Our method demonstrates pragmatic and generalization performance across multiple outdoor scenes.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SVM-City 户外场景理解 多模态融合 City-VLM 数据集
相关文章