cs.AI updates on arXiv.org 07月18日 12:13
Demystifying MuZero Planning: Interpreting the Learned Model
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过解释MuZero模型中动态网络学习的潜在状态,揭示了其在多种游戏中的超人类表现机制。研究发现,虽然动态网络在长时间模拟中准确性降低,但MuZero通过规划修正错误仍能保持高效表现。实验表明,动态网络在棋类游戏中比在Atari游戏中学习到的潜在状态更好。

arXiv:2411.04580v2 Announce Type: replace Abstract: MuZero has achieved superhuman performance in various games by using a dynamics network to predict the environment dynamics for planning, without relying on simulators. However, the latent states learned by the dynamics network make its planning process opaque. This paper aims to demystify MuZero's model by interpreting the learned latent states. We incorporate observation reconstruction and state consistency into MuZero training and conduct an in-depth analysis to evaluate latent states across two board games: 9x9 Go and Gomoku, and three Atari games: Breakout, Ms. Pacman, and Pong. Our findings reveal that while the dynamics network becomes less accurate over longer simulations, MuZero still performs effectively by using planning to correct errors. Our experiments also show that the dynamics network learns better latent states in board games than in Atari games. These insights contribute to a better understanding of MuZero and offer directions for future research to improve the performance, robustness, and interpretability of the MuZero algorithm. The code and data are available at https://rlg.iis.sinica.edu.tw/papers/demystifying-muzero-planning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MuZero 动态网络 潜在状态 游戏性能 模型解析
相关文章