cs.AI updates on arXiv.org 07月18日 12:13
Imbalance in Balance: Online Concept Balancing in Generation Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过实验探索视觉生成中概念响应不稳定的原因,并提出一种概念均衡损失函数(IMBA loss)以解决此问题。该方法在线运行,无需离线数据集处理,仅需少量代码修改,显著提升了基线模型的概念响应能力,在Inert-CompBench和其他公开测试集上取得高度竞争力的结果。

arXiv:2507.13345v1 Announce Type: cross Abstract: In visual generation tasks, the responses and combinations of complex concepts often lack stability and are error-prone, which remains an under-explored area. In this paper, we attempt to explore the causal factors for poor concept responses through elaborately designed experiments. We also design a concept-wise equalization loss function (IMBA loss) to address this issue. Our proposed method is online, eliminating the need for offline dataset processing, and requires minimal code changes. In our newly proposed complex concept benchmark Inert-CompBench and two other public test sets, our method significantly enhances the concept response capability of baseline models and yields highly competitive results with only a few codes.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视觉生成 概念响应 IMBA损失函数
相关文章