cs.AI updates on arXiv.org 07月18日 12:13
ParaStudent: Generating and Evaluating Realistic Student Code by Teaching LLMs to Struggle
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了基于大型语言模型(LLM)的“学生式”代码生成,通过设计低、高分辨率实验,评估代码输出在语义、功能和风格维度上的表现,发现微调可显著提升与真实学生轨迹的匹配度。

arXiv:2507.12674v1 Announce Type: cross Abstract: Large Language Models (LLMs) have shown strong performance on programming tasks, but can they generate student-like code like real students - imperfect, iterative, and stylistically diverse? We present ParaStudent, a systematic study of LLM-based "student-like" code generation in an introductory programming course setting. Using a dataset of timestamped student submissions across multiple semesters, we design low- and high-resolution experiments to model student progress and evaluate code outputs along semantic, functional, and stylistic dimensions. Our results show that fine-tuning significantly improves alignment with real student trajectories and captures error patterns, incremental improvements, and stylistic variations more faithfully. This study shows that modeling realistic student code requires capturing learning dynamics through context-aware generation, temporal modeling, and multi-dimensional evaluation. Code for experiments and evaluation is available at \href{https://github.com/mmiroyan/ParaStudent}{\texttt{github.com/mmiroyan/ParaStudent}}.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 学生式代码 代码生成 微调 代码评估
相关文章