cs.AI updates on arXiv.org 07月18日 12:13
MS-DGCNN++: A Multi-Scale Fusion Dynamic Graph Neural Network with Biological Knowledge Integration for LiDAR Tree Species Classification
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出了一种名为MS-DGCNN++的树种分类新方法,通过多尺度融合动态图卷积网络,在树种分类和3D物体识别中取得了优异性能。

arXiv:2507.12602v1 Announce Type: cross Abstract: Tree species classification from terrestrial LiDAR point clouds is challenging because of the complex multi-scale geometric structures in forest environments. Existing approaches using multi-scale dynamic graph convolutional neural networks (MS-DGCNN) employ parallel multi-scale processing, which fails to capture the semantic relationships between the hierarchical levels of the tree architecture. We present MS-DGCNN++, a hierarchical multiscale fusion dynamic graph convolutional network that uses semantically meaningful feature extraction at local, branch, and canopy scales with cross-scale information propagation. Our method employs scale-specific feature engineering, including standard geometric features for the local scale, normalized relative vectors for the branch scale, and distance information for the canopy scale. This hierarchical approach replaces uniform parallel processing with semantically differentiated representations that are aligned with the natural tree structure. Under the same proposed tree species data augmentation strategy for all experiments, MS-DGCNN++ achieved an accuracy of 94.96 \% on STPCTLS, outperforming DGCNN, MS-DGCNN, and the state-of-the-art model PPT. On FOR-species20K, it achieves 67.25\% accuracy (6.1\% improvement compared to MS-DGCNN). For standard 3D object recognition, our method outperformed DGCNN and MS-DGCNN with overall accuracies of 93.15\% on ModelNet40 and 94.05\% on ModelNet10. With lower parameters and reduced complexity compared to state-of-the-art transformer approaches, our method is suitable for resource-constrained applications while maintaining a competitive accuracy. Beyond tree classification, the method generalizes to standard 3D object recognition, establishing it as a versatile solution for diverse point cloud processing applications. The implementation code is publicly available at https://github.com/said-ohamouddou/MS-DGCNN2.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MS-DGCNN++ 树种分类 动态图卷积网络 3D物体识别 多尺度融合
相关文章