cs.AI updates on arXiv.org 07月18日 12:13
A Multi-Stage Framework with Taxonomy-Guided Reasoning for Occupation Classification Using Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

研究评估了大型语言模型在职业分类任务中的能力,提出多阶段框架以提升性能,并在大规模数据集上证明其有效性。

arXiv:2503.12989v2 Announce Type: replace-cross Abstract: Automatically annotating job data with standardized occupations from taxonomies, known as occupation classification, is crucial for labor market analysis. However, this task is often hindered by data scarcity and the challenges of manual annotations. While large language models (LLMs) hold promise due to their extensive world knowledge and in-context learning capabilities, their effectiveness depends on their knowledge of occupational taxonomies, which remains unclear. In this study, we assess the ability of LLMs to generate precise taxonomic entities from taxonomy, highlighting their limitations, especially for smaller models. To address these challenges, we propose a multi-stage framework consisting of inference, retrieval, and reranking stages, which integrates taxonomy-guided reasoning examples to enhance performance by aligning outputs with taxonomic knowledge. Evaluations on a large-scale dataset show that our framework not only enhances occupation and skill classification tasks, but also provides a cost-effective alternative to frontier models like GPT-4o, significantly reducing computational costs while maintaining strong performance. This makes it a practical and scalable solution for occupation classification and related tasks across LLMs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 职业分类 数据集评估
相关文章