cs.AI updates on arXiv.org 07月18日 12:13
Assay2Mol: large language model-based drug design using BioAssay context
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了Assay2Mol,一种利用大型语言模型从现有生化筛选实验中提取信息,生成候选药物分子的新方法,有助于药物早期发现。

arXiv:2507.12574v1 Announce Type: cross Abstract: Scientific databases aggregate vast amounts of quantitative data alongside descriptive text. In biochemistry, molecule screening assays evaluate the functional responses of candidate molecules against disease targets. Unstructured text that describes the biological mechanisms through which these targets operate, experimental screening protocols, and other attributes of assays offer rich information for new drug discovery campaigns but has been untapped because of that unstructured format. We present Assay2Mol, a large language model-based workflow that can capitalize on the vast existing biochemical screening assays for early-stage drug discovery. Assay2Mol retrieves existing assay records involving targets similar to the new target and generates candidate molecules using in-context learning with the retrieved assay screening data. Assay2Mol outperforms recent machine learning approaches that generate candidate ligand molecules for target protein structures, while also promoting more synthesizable molecule generation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

药物发现 大型语言模型 生化筛选 候选分子生成 药物研发
相关文章