cs.AI updates on arXiv.org 07月18日 12:13
Safeguarding Federated Learning-based Road Condition Classification
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对联邦学习在路况分类系统中的标签翻转攻击,揭示了现有系统的脆弱性,并提出一种防御机制,有效减轻攻击影响。

arXiv:2507.12568v1 Announce Type: cross Abstract: Federated Learning (FL) has emerged as a promising solution for privacy-preserving autonomous driving, specifically camera-based Road Condition Classification (RCC) systems, harnessing distributed sensing, computing, and communication resources on board vehicles without sharing sensitive image data. However, the collaborative nature of FL-RCC frameworks introduces new vulnerabilities: Targeted Label Flipping Attacks (TLFAs), in which malicious clients (vehicles) deliberately alter their training data labels to compromise the learned model inference performance. Such attacks can, e.g., cause a vehicle to mis-classify slippery, dangerous road conditions as pristine and exceed recommended speed. However, TLFAs for FL-based RCC systems are largely missing. We address this challenge with a threefold contribution: 1) we disclose the vulnerability of existing FL-RCC systems to TLFAs; 2) we introduce a novel label-distance-based metric to precisely quantify the safety risks posed by TLFAs; and 3) we propose FLARE, a defensive mechanism leveraging neuron-wise analysis of the output layer to mitigate TLFA effects. Extensive experiments across three RCC tasks, four evaluation metrics, six baselines, and three deep learning models demonstrate both the severity of TLFAs on FL-RCC systems and the effectiveness of FLARE in mitigating the attack impact.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 路况分类 标签翻转攻击 防御机制 安全风险
相关文章