cs.AI updates on arXiv.org 07月18日 12:13
Leveraging Quantum Superposition to Infer the Dynamic Behavior of a Spatial-Temporal Neural Network Signaling Model
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍并解决了一种与神经生物学和机器学习相关的大规模网络动态问题。通过结合Grover和Deutsch-Jozsa量子算法,实现了高效求解,并扩展了算法功能以适应独特输入结构需求。

arXiv:2403.18963v4 Announce Type: replace-cross Abstract: The exploration of new problem classes for quantum computation is an active area of research. In this paper, we introduce and solve a novel problem class related to dynamics on large-scale networks relevant to neurobiology and machine learning. Specifically, we ask if a network can sustain inherent dynamic activity beyond some arbitrary observation time or if the activity ceases through quiescence or saturation via an epileptic-like state. We show that this class of problems can be formulated and structured to take advantage of quantum superposition and solved efficiently using a coupled workflow between the Grover and Deutsch-Jozsa quantum algorithms. To do so, we extend their functionality to address the unique requirements of how input (sub)sets into the algorithms must be mathematically structured while simultaneously constructing the inputs so that measurement outputs can be interpreted as meaningful properties of the network dynamics. This, in turn, allows us to answer the question we pose.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子计算 网络动态 Grover算法 Deutsch-Jozsa算法
相关文章