cs.AI updates on arXiv.org 07月18日 12:13
Prediction of Highway Traffic Flow Based on Artificial Intelligence Algorithms Using California Traffic Data
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种基于机器学习的交通流量预测模型,通过分析加利福尼亚州交通数据,采用多种算法预测高速公路交通流量,以解决全球交通拥堵问题。

arXiv:2507.13112v1 Announce Type: new Abstract: The study "Prediction of Highway Traffic Flow Based on Artificial Intelligence Algorithms Using California Traffic Data" presents a machine learning-based traffic flow prediction model to address global traffic congestion issues. The research utilized 30-second interval traffic data from California Highway 78 over a five-month period from July to November 2022, analyzing a 7.24 km westbound section connecting "Melrose Dr" and "El-Camino Real" in the San Diego area. The study employed Multiple Linear Regression (MLR) and Random Forest (RF) algorithms, analyzing data collection intervals ranging from 30 seconds to 15 minutes. Using R^2, MAE, and RMSE as performance metrics, the analysis revealed that both MLR and RF models performed optimally with 10-minute data collection intervals. These findings are expected to contribute to future traffic congestion solutions and efficient traffic management.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

人工智能 交通流量预测 机器学习 交通拥堵 算法
相关文章