MarkTechPost@AI 15小时前
A Coding Guide to Build an AI Code-Analysis Agent with Griffe
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本教程介绍了如何使用Griffe作为核心工具构建高级AI代码分析器,通过Griffe的强大内省能力,可以实时加载、遍历和解构Python包结构。教程指导用户将Griffe与NetworkX(用于依赖图)和Matplotlib(用于可视化仪表板)等库结合,将原始代码库转化为可操作的洞察。内容涵盖量化复杂性、发现文档差距和标记结构风险等,同时在遇到难以深度解析的包时平滑回退到基本内省。

📚 Griffe作为核心工具,提供了丰富的内省能力,能够无缝加载、遍历和解构Python包结构,支持实时分析代码库的内部细节。

🔍 通过与NetworkX和Matplotlib等库的集成,Griffe能够生成依赖关系图和可视化仪表板,将抽象的代码结构转化为直观的可视化洞察。

📊 分析器能够量化代码复杂性,通过计算类、函数和模块的数量,并结合继承关系和文档覆盖情况,生成综合复杂性评分。

📝 自动识别文档缺失问题,通过分析API表面的文档字符串覆盖率,标记需要改进的文档区域,帮助提升代码可维护性。

🔧 支持简单的模块分析作为后备方案,当Griffe无法深度解析某个包时,能够自动回退到基本内省,确保分析的鲁棒性。

In this tutorial, we begin by diving into Griffe, positioning it as the center of our advanced AI Code Analyzer. By leveraging Griffe’s rich introspection capabilities, we can seamlessly load, traverse, and dissect Python package structures in real-time. This tutorial guides you through the process of integrating Griffe with complementary libraries, such as NetworkX for dependency graphs and Matplotlib for visual dashboards, to transform raw codebases into actionable insights. As we progress, we showcase how Griffe enables us to quantify complexity, surface documentation gaps, and flag structural risks, all while maintaining a smooth fallback to basic introspection when a package resists deeper parsing.

!pip install griffe requests matplotlib networkx -qimport griffeimport jsonimport requestsfrom typing import Dict, List, Anyimport matplotlib.pyplot as pltimport networkx as nxfrom collections import defaultdictimport warningswarnings.filterwarnings('ignore')

We start by quietly pulling in Griffe, alongside requests, Matplotlib, and NetworkX so that we can decode any Python package’s internals in real-time. With the imports in place, we now stand ready to tap Griffe’s introspection power, map dependencies, and visualize insights without cluttering our output with warnings.

class AICodeAnalyzer:   """AI Agent for advanced code analysis using Griffe"""     def __init__(self):       self.analysis_cache = {}       self.dependency_graph = nx.DiGraph()     def analyze_package(self, package_name: str, search_paths: List[str] = None) -> Dict[str, Any]:       """Comprehensive package analysis for AI decision making"""       try:           pkg = griffe.load(package_name, search_paths=search_paths, try_relative_path=False)                     analysis = {               'package_name': package_name,               'total_modules': 0,               'total_classes': 0,               'total_functions': 0,               'complexity_score': 0,               'api_surface': [],               'inheritance_tree': {},               'risk_factors': []           }                     self._analyze_object(pkg, analysis)                     analysis['complexity_score'] = self._calculate_complexity(analysis)                     analysis['risk_factors'] = self._identify_risks(pkg, analysis)                     self.analysis_cache[package_name] = analysis           return analysis                 except Exception as e:           return {'error': f"Failed to analyze {package_name}: {str(e)}"}     def analyze_simple_module(self, module_name: str) -> Dict[str, Any]:       """Analyze a simple module without deep dependency resolution"""       try:           import importlib           module = importlib.import_module(module_name)                     analysis = {               'package_name': module_name,               'total_modules': 1,               'total_classes': 0,               'total_functions': 0,               'complexity_score': 0,               'api_surface': [],               'inheritance_tree': {},               'risk_factors': []           }                     for attr_name in dir(module):               if not attr_name.startswith('_'):                    attr = getattr(module, attr_name)                   if isinstance(attr, type):                        analysis['total_classes'] += 1                       analysis['api_surface'].append({                           'name': f"{module_name}.{attr_name}",                           'type': 'class',                           'public': True,                           'docstring': bool(attr.__doc__),                           'methods': len([m for m in dir(attr) if not m.startswith('_')])                       })                   elif callable(attr):                        analysis['total_functions'] += 1                       analysis['api_surface'].append({                           'name': f"{module_name}.{attr_name}",                           'type': 'function',                           'public': True,                           'docstring': bool(attr.__doc__),                           'parameters': 0                        })                     analysis['complexity_score'] = self._calculate_complexity(analysis)                     analysis['risk_factors'] = self._identify_basic_risks(analysis)                     self.analysis_cache[module_name] = analysis           return analysis                 except Exception as e:           return {'error': f"Failed to analyze {module_name}: {str(e)}"}     def _analyze_object(self, obj, analysis: Dict[str, Any], path: str = ""):       """Recursively analyze package objects"""       try:           current_path = f"{path}.{obj.name}" if path else obj.name                     if hasattr(obj, 'kind'):               if obj.kind.value == 'module':                   analysis['total_modules'] += 1               elif obj.kind.value == 'class':                   analysis['total_classes'] += 1                   analysis['api_surface'].append({                       'name': current_path,                       'type': 'class',                       'public': not obj.name.startswith('_'),                       'docstring': bool(obj.docstring),                       'methods': len([m for m in obj.members.values() if hasattr(m, 'kind') and m.kind.value == 'function'])                   })                                     if hasattr(obj, 'bases') and obj.bases:                       analysis['inheritance_tree'][current_path] = [str(base) for base in obj.bases]                                     elif obj.kind.value == 'function':                   analysis['total_functions'] += 1                   analysis['api_surface'].append({                       'name': current_path,                       'type': 'function',                       'public': not obj.name.startswith('_'),                       'docstring': bool(obj.docstring),                       'parameters': len(obj.parameters) if hasattr(obj, 'parameters') else 0                   })                     if hasattr(obj, 'members'):               for member in obj.members.values():                   self._analyze_object(member, analysis, current_path)                         except Exception as e:           pass     def _calculate_complexity(self, analysis: Dict[str, Any]) -> float:       """Calculate package complexity score for AI decision making"""       base_score = (analysis['total_classes'] * 2 +                    analysis['total_functions'] * 1 +                    analysis['total_modules'] * 0.5)             inheritance_penalty = len(analysis['inheritance_tree']) * 1.5             documented_items = sum(1 for item in analysis['api_surface'] if item['docstring'])       total_items = len(analysis['api_surface'])       doc_penalty = (total_items - documented_items) * 0.3 if total_items > 0 else 0             return base_score + inheritance_penalty + doc_penalty     def _identify_risks(self, pkg, analysis: Dict[str, Any]) -> List[str]:       """Identify potential risks for AI agent decision making"""       risks = []             if len(analysis['api_surface']) > 50:           risks.append("Large API surface - potential maintenance burden")             documented = sum(1 for item in analysis['api_surface'] if item['docstring'])       total = len(analysis['api_surface'])       if total > 0 and documented / total < 0.5:           risks.append("Poor documentation coverage")             max_inheritance_depth = 0       for bases in analysis['inheritance_tree'].values():           max_inheritance_depth = max(max_inheritance_depth, len(bases))       if max_inheritance_depth > 3:           risks.append("Deep inheritance hierarchy detected")             return risks     def _identify_basic_risks(self, analysis: Dict[str, Any]) -> List[str]:       """Basic risk identification for simple module analysis"""       risks = []             if len(analysis['api_surface']) > 30:           risks.append("Large API surface")             documented = sum(1 for item in analysis['api_surface'] if item['docstring'])       total = len(analysis['api_surface'])       if total > 0 and documented / total < 0.4:           risks.append("Limited documentation")             return risks     def compare_packages(self, pkg1: str, pkg2: str) -> Dict[str, Any]:       """Compare two packages for AI decision making"""       analysis1 = self.analyze_package(pkg1)       if 'error' in analysis1:           analysis1 = self.analyze_simple_module(pkg1)             analysis2 = self.analyze_package(pkg2)       if 'error' in analysis2:           analysis2 = self.analyze_simple_module(pkg2)             if 'error' in analysis1 or 'error' in analysis2:           return {'error': 'Failed to compare packages'}             comparison = {           'package_comparison': {               'complexity': {                   pkg1: analysis1['complexity_score'],                   pkg2: analysis2['complexity_score'],                   'winner': pkg1 if analysis1['complexity_score'] < analysis2['complexity_score'] else pkg2               },               'api_size': {                   pkg1: len(analysis1['api_surface']),                   pkg2: len(analysis2['api_surface']),                   'winner': pkg1 if len(analysis1['api_surface']) < len(analysis2['api_surface']) else pkg2               },               'documentation': {                   pkg1: self._doc_coverage(analysis1),                   pkg2: self._doc_coverage(analysis2),                   'winner': pkg1 if self._doc_coverage(analysis1) > self._doc_coverage(analysis2) else pkg2               }           },           'recommendation': self._make_recommendation(analysis1, analysis2, pkg1, pkg2)       }             return comparison     def _doc_coverage(self, analysis: Dict[str, Any]) -> float:       """Calculate documentation coverage percentage"""       if not analysis['api_surface']:           return 0.0       documented = sum(1 for item in analysis['api_surface'] if item['docstring'])       return (documented / len(analysis['api_surface'])) * 100     def _make_recommendation(self, a1: Dict, a2: Dict, pkg1: str, pkg2: str) -> str:       """Make AI recommendation based on analysis"""       score1 = (100 - a1['complexity_score']) + self._doc_coverage(a1)       score2 = (100 - a2['complexity_score']) + self._doc_coverage(a2)             if score1 > score2:           return f"Recommend {pkg1}: Better complexity/documentation balance"       elif score2 > score1:           return f"Recommend {pkg2}: Better complexity/documentation balance"       else:           return "Packages are equivalent in key metrics"     def visualize_analysis(self, package_name: str):       """Create visualizations for AI insights"""       if package_name not in self.analysis_cache:           analysis = self.analyze_package(package_name)           if 'error' in analysis:               analysis = self.analyze_simple_module(package_name)             analysis = self.analysis_cache[package_name]             if 'error' in analysis:           print(f" Cannot visualize {package_name}: {analysis['error']}")           return             fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 10))       fig.suptitle(f'AI Analysis Dashboard: {package_name}', fontsize=16, fontweight='bold')             components = ['Modules', 'Classes', 'Functions']       counts = [analysis['total_modules'], analysis['total_classes'], analysis['total_functions']]       colors = ['#FF6B6B', '#4ECDC4', '#45B7D1']             non_zero_components = []       non_zero_counts = []       non_zero_colors = []       for i, count in enumerate(counts):           if count > 0:               non_zero_components.append(components[i])               non_zero_counts.append(count)               non_zero_colors.append(colors[i])             if non_zero_counts:           ax1.pie(non_zero_counts, labels=non_zero_components, colors=non_zero_colors,                  autopct='%1.1f%%', startangle=90)       else:           ax1.text(0.5, 0.5, 'No components found', ha='center', va='center', transform=ax1.transAxes)       ax1.set_title('Component Distribution')             public_items = sum(1 for item in analysis['api_surface'] if item['public'])       private_items = len(analysis['api_surface']) - public_items             ax2.bar(['Public API', 'Private API'], [public_items, private_items],               color=['#2ECC71', '#E74C3C'])       ax2.set_title('API Surface Analysis')       ax2.set_ylabel('Count')             documented = sum(1 for item in analysis['api_surface'] if item['docstring'])       undocumented = len(analysis['api_surface']) - documented             ax3.bar(['Documented', 'Undocumented'], [documented, undocumented],               color=['#3498DB', '#F39C12'])       ax3.set_title('Documentation Coverage')       ax3.set_ylabel('Count')             complexity = analysis['complexity_score']       ax4.barh(['Complexity Score'], [complexity], color='#9B59B6')       ax4.set_title('Package Complexity')       ax4.set_xlabel('Score')             plt.tight_layout()       plt.show()             print(f"\n AI INSIGHTS for {package_name}:")       print(f" Complexity Score: {complexity:.2f}")       print(f" Total API Elements: {len(analysis['api_surface'])}")       print(f" Documentation Coverage: {self._doc_coverage(analysis):.1f}%")             if analysis['risk_factors']:           print(f"  Risk Factors:")           for risk in analysis['risk_factors']:               print(f"   • {risk}")       else:           print(" No major risk factors detected")

We encapsulate Griffe’s deep-inspection power within an AICodeAnalyzer class, providing a single interface to load any package, traverse every module, class, and function, and cache the resulting metrics for lightning-fast reuse. As we iterate through each object, we let Griffe surface inheritance chains and docstrings. We layer on our own complexity scoring, risk detection, and even side-by-side package comparisons, all ready for rich visualization. In short, Griffe provides us with the raw structure; we transform it into actionable AI insights.

def main():   """Main demonstration of AI Agent capabilities"""   print(" Advanced Griffe AI Agent Tutorial - Fixed Version")   print("===================================================")     analyzer = AICodeAnalyzer()     packages_to_analyze = ['datetime', 'os', 'sys']     print("\n Analyzing Python modules...")     successful_analysis = None   for pkg in packages_to_analyze:       print(f"\n Analyzing {pkg}...")             analysis = analyzer.analyze_package(pkg)       if 'error' in analysis:           print(f"     Griffe analysis failed, trying simple analysis...")           analysis = analyzer.analyze_simple_module(pkg)             if 'error' not in analysis:           print(f"    Modules: {analysis['total_modules']}")           print(f"    Classes: {analysis['total_classes']}")           print(f"    Functions: {analysis['total_functions']}")           print(f"    Complexity: {analysis['complexity_score']:.2f}")                     if successful_analysis is None:               successful_analysis = pkg       else:           print(f"    {analysis['error']}")     if successful_analysis:       print(f"\n Generating visualization for {successful_analysis}...")       analyzer.visualize_analysis(successful_analysis)     print(f"\n  Comparing packages...")   try:       comparison = analyzer.compare_packages('datetime', 'os')       if 'error' not in comparison:           print(f" {comparison['recommendation']}")           print(f" Complexity comparison:")           print(f"   • datetime: {comparison['package_comparison']['complexity']['datetime']:.2f}")           print(f"   • os: {comparison['package_comparison']['complexity']['os']:.2f}")       else:           print(f" {comparison['error']}")   except Exception as e:       print(f" Comparison failed: {str(e)}")     print("\n Tutorial completed! This framework now:")   print("   • Handles analysis errors gracefully")   print("   • Falls back to simple module analysis when needed")   print("   • Provides meaningful insights for development decisions")   print("   • Works with both Griffe and basic Python introspection")   print("\n For better results, try analyzing third-party packages like:")   print("   • requests, numpy, pandas, flask, django")

We wrap everything up in main(), where we unleash Griffe in a real-time demo: we sweep through core modules, fall back gracefully when Griffe can’t dive deep, and surface instant complexity metrics. From there we let Griffe fuel a live dashboard, then pit two packages head-to-head so we can make a data-driven recommendation on the spot.

if __name__ == "__main__":   main()

We cap the script with the usual ‘ if __name__ == “__main__”: ‘ guard so that, whenever we run this notebook as a standalone module, we immediately launch our Griffe-powered’ main() ‘ routine.

In conclusion, we have now demonstrated how Griffe empowers us to move far beyond simple static analysis, providing our AI agent with a nuanced, metrics-driven understanding of any Python codebase. With Griffe at the core, we effortlessly compute complexity scores, visualize component distributions, and produce side-by-side package comparisons that inform clear recommendations. This workflow streamlines architectural reviews and also lays a flexible foundation for future enhancements, whether we plug in additional static-analysis checks, enrich our visualizations, or extend risk detection rules.


Check out the Codes. All credit for this research goes to the researchers of this project. Ready to connect with 1 Million+ AI Devs/Engineers/Researchers? See how NVIDIA, LG AI Research, and top AI companies leverage MarkTechPost to reach their target audience[Learn More]

The post A Coding Guide to Build an AI Code-Analysis Agent with Griffe appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Griffe 代码分析 AI决策 Python内省
相关文章