arXiv:2507.12242v1 Announce Type: cross Abstract: Recommender systems can be found everywhere today, shaping our everyday experience whenever we're consuming content, ordering food, buying groceries online, or even just reading the news. Let's imagine we're in the process of building a recommender system to make content suggestions to users on social media. When thinking about fairness, it becomes clear there are several perspectives to consider: the users asking for tailored suggestions, the content creators hoping for some limelight, and society at large, navigating the repercussions of algorithmic recommendations. A shared fairness concern across all three is the emergence of filter bubbles, a side-effect that takes place when recommender systems are almost "too good", making recommendations so tailored that users become inadvertently confined to a narrow set of opinions/themes and isolated from alternative ideas. From the user's perspective, this is akin to manipulation. From the small content creator's perspective, this is an obstacle preventing them access to a whole range of potential fans. From society's perspective, the potential consequences are far-reaching, influencing collective opinions, social behavior and political decisions. How can our recommender system be fine-tuned to avoid the creation of filter bubbles, and ensure a more inclusive and diverse content landscape? Approaching this problem involves defining one (or more) performance metric to represent diversity, and tweaking our recommender system's performance through the lens of fairness. By incorporating this metric into our evaluation framework, we aim to strike a balance between personalized recommendations and the broader societal goal of fostering rich and varied cultures and points of view.