arXiv:2507.12189v1 Announce Type: cross Abstract: We introduce BenchRL-QAS, a unified benchmarking framework for systematically evaluating reinforcement learning (RL) algorithms in quantum architecture search (QAS) across diverse variational quantum algorithm tasks and system sizes ranging from 2- to 8-qubit. Our study benchmarks nine RL agents including both value-based and policy-gradient methods on representative quantum problems such as variational quantum eigensolver, variational quantum state diagonalization, quantum classification, and state preparation, spanning both noiseless and realistic noisy regimes. We propose a weighted ranking metric that balances accuracy, circuit depth, gate count, and computational efficiency, enabling fair and comprehensive comparison. Our results first reveal that RL-based quantum classifier outperforms baseline variational classifiers. Then we conclude that no single RL algorithm is universally optimal when considering a set of QAS tasks; algorithmic performance is highly context-dependent, varying with task structure, qubit count, and noise. This empirical finding provides strong evidence for the "no free lunch" principle in RL-based quantum circuit design and highlights the necessity of tailored algorithm selection and systematic benchmarking for advancing quantum circuit synthesis. This work represents the most comprehensive RL-QAS benchmarking effort to date, and BenchRL-QAS along with all experimental data are made publicly available to support reproducibility and future research https://github.com/azhar-ikhtiarudin/bench-rlqas.